European Journal of Inorganic Chemistry
10.1002/ejic.202000461
FULL PAPER
2+
[
Ni(L3)2]2+: Synthesized as reported for [Ni(L1)2] . Yield: 73%. ESI-MS:
[6]
[7]
[8]
L. W. K. Moodie, M. C. Žužek, R. Frangež, J. H. Andersen, E. Hansen,
E. K. Olsen, M. Cergolj, K. Sepčić, K. Ø. Hansen, J. Svenson, Org.
Biomol. Chem. 2016, 14, 11220-11229.
+
+
m/z calcd (C54H36N6NiO10S2, [M ]), 1051.1366; found, 1051.1207 [M ].
Elemental analysis found for C54H36N6NiO10S2: C, 62.16; H, 3.85; N,
8
.56; Ni, 5.98.
a) J.-X. Guo, J. J. Q. Wu, J. B. Wright, G. H. Lushington, Chem. Res.
Toxicol. 2006, 19, 209-216; b) V. T. Pardío, N. Ibarra, M. A. Rodríguez,
K. N. Waliszewski, J. Agric. Food Chem. 2001, 49, 6057-6062.
aM. A. Astle, G. A. Rance, M. W. Fay, S. Notman, M. R. Sambrook, A.
N. Khlobystov, J. Mater. Chem. A 2018, 6, 20444-20453; b) J. Henych,
P. Janoš, M. Kormunda, J. Tolasz, V. Štengl, Arabian J. Chem. 2016.
a) H. Tabe, C. Terashima, Y. Yamada, Catal. Sci. Technol. 2018, 8,
Ni(L4)2]2+: Synthesized as reported for [Ni(L1)2] . Yield: 64%. ESI-MS:
2+
[
+
+
m/z calcd (C54H38N4NiO8S2, [M ]), 993.16; found, 993.12 [M ]. Elemental
analysis found for C54H38N4NiO8S2: 65.87; H, 4.10; N, 5.94; Ni, 5.91.
[
9]
Photophysical Properties: The UV-vis absorption spectroscopic studies
were performed at room temperature. The stock solution of ligands (10
µM) were prepared in 30% acetonitrile in water. The metal solution (1
mM) was prepared in distilled water and sonicated for 15 minutes. The
change in the UV-vis absorption spectra was recorded upon successive
addition of metal solution. After each addition, sample solution was
sonicated for 5 minutes to attain the equilibrium between the reaction of
ligand and metal ions. Experiments were performed in triplicate and
practical error was calculated from standard deviation.
4
747-4756; b) L. J. Daumann, G. Schenk, D. L. Ollis, L. R. Gahan,
Dalton Trans. 2014, 43, 910-928; c) S. Collin, N. Giraud, E. Dumont, O.
Reinaud, Org. Chem. Front. 2019, 6, 1627-1636; d) G. Kaur, A. Singh,
A. Singh, N. Kaur, N. Singh, Dalton Trans. 2018, 47, 5595-5606.
[
[
10] M. Xia, C. Zhuo, X. Ma, X. Zhang, H. Sun, Q. Zhai, Y. Zhang, Chem.
Comm. 2017, 53, 11302-11305.
11] a) L. M. González-Barcia, M. J. Romero, A. M. González Noya, M. R.
Bermejo, M. Maneiro, G. Zaragoza, R. Pedrido, Inorg. Chem. 2016, 55,
7823-7825; b) C. Puente, I. López, in Direct Synth. Met. Complexes
(
Ed.: B. Kharisov), Elsevier, 2018, pp. 87-141.
Degradation Study of Organophosphate: The 1 mM stock solution of
OPs was prepared in distilled water and further diluted to different
concentrations as per experiment requirement. The solution of 10 µM of
metal complexes were added into 100 µM solution of
chlorpyriphos/parathion prepared in HEPES buffer at 30 °C. All the UV-
vis absorption studies were carried out using spectrophotometer attached
with thermostated cuvette holder. The change in the absorption
absorption band due to formation of p-nitrophenoxide in response to
hydrolysis of parathion methyl was recorded upto 38 minutes. The
mechanism of OPs degradation was evaluated using 31P NMR and LC-
MS studies were recorded in DMSO. pH of DMSO solution was adjusted
with 0.1 M CHES buffer. The 31PNMR of chlorpyriphos was recorded
after different time (0-50 min) interval upon addition of 10 µM of metal
complexes. Change in the NMR peak was observed and correlated with
OPs degradation. Further, the degraded reaction product was analyzed
from LC-MS chromatogram.
[
[
[
12] a) D. G. Yakhvarov, A. F. Khusnuriyalova, O. G. Sinyashin,
Organometallics 2014, 33, 4574-4589; b) K. Ito, T. Nagata, K. Tanaka,
Inorg. Chem. 2001, 40, 6331-6333; c) C. Oldham, D. G. Tuck, J. Chem.
Educ. 1982, 59, 420.
13] a) C. Batchelor-McAuley, E. J. F. Dickinson, N. V. Rees, K. E. Toghill,
R. G. Compton, Anal. Chem. 2012, 84, 669-684; b) M. R. Chapman, Y.
M. Shafi, N. Kapur, B. N. Nguyen, C. E. Willans, Chem. Comm. 2015,
5
1, 1282-1284.
14] a) K. Obata, L. Stegenburga, Y. Zhou, K. Takanabe, ACS Sustainable
Chem. Eng. 2019, 7, 7241-7251; b) W. Chen, H. Wang, Y. Li, Y. Liu, J.
Sun, S. Lee, J.-S. Lee, Y. Cui, ACS Cent. Sci. 2015, 1, 244-251.
[
[
15] J. Ostojic, S. Herenda, Z. Besic, M. Milos, B. Galic, Molecules 2017, 22,
1
120
16] a) M. Wałęsa-Chorab, R. Banasz, D. Marcinkowski, M. Kubicki, V.
Patroniak, RSC Adv. 2017, 7, 50858-50867; b) Z. Lu, G. Chen, S.
Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu,
Nature Catalysis 2018, 1, 156.
[
[
[
17] a) E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302-
308; b) L. Chen, Z. Guo, X.-G. Wei, C. Gallenkamp, J. Bonin, E.
Acknowledgements
Anxolabꢀhꢁre-Mallart, K.-C. Lau, T.-C. Lau, M. Robert, J. Am. Chem.
Soc. 2015, 137, 10918-10921.
All authors are thankful to DST (Project No. DST/INT/Mexico/P-
18] a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H.
Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341; b) L. J. Bourhis, O.
0
5/2016) for providing the funding.
V. Dolomanov, R. J. Gildea, J. A. Howard, H. Puschmann,
Acta
Keywords: Naphthalimide • Metal Complexes •
Organophosphates • Hydrolysis •
Crystallogr., Sect. A: Found. Adv. 2015, 71, 59-75.
19] a) A. B. Carter, R. J. Laverick, D. J. Wales, S. O. Akponasa, A. J. Scott,
Kitchen, ChemistrySelect, 2019, 4, 1850-1856
[
1]
a) S. Xiong, Y. Deng, Y. Zhou, D. Gong, Y. Xu, L. Yang, H. Chen, L.
Chen, T. Song, A. Luo, X. Deng, C. Zhang, Z. Jiang, Anal. Methods
[
2018, 10, 5468-5479; b) J. L. Adgate, A. Barteková, P. C. Raynor, J. G.
Griggs, A. D. Ryan, B. R. Acharya, C. J. Volkmann, D. D. Most, S. Lai,
M. D. Bonds, J. Environ. Monit. 2009, 11, 49-55.
[
21] a) R. Sanyal, X. Zhang, P. Chakraborty, S. Giri, S. K. Chattopadhyay, C.
Zhao, D. Das, New J. Chem. 2016, 40, 7388-7398; b) H. Arora, S. K.
Barman, F. Lloret, R. Mukherjee, Inorg. Chem. 2012, 51, 5539-5553; c)
A. Zheng, C. Shen, Q. Tang, C.-B. Gong, C.-F. Chow, Chem. Eur. J.
[
[
2]
3]
J. Popp, K. Pető, J. Nagy, Agron. Sustainable Dev. 2013, 33, 243-255.
a) C. K. Winter, J. Agric. Food Chem. 2012, 60, 4425-4429; b) G. I.
Scott, M. H. Fulton, E. F. Wirth, G. T. Chandler, P. B. Key, J. W.
Daugomah, D. Bearden, K. W. Chung, E. D. Strozier, M. DeLorenzo, S.
Sivertsen, A. Dias, M. Sanders, J. M. Macauley, L. R. Goodman, M. W.
LaCroix, G. W. Thayer, J. Kucklick, J. Agric. Food Chem. 2002, 50,
2019, 25, 9643-9649.
[
[
[
[
22] R. Sanyal, A. Guha, T. Ghosh, T. K. Mondal, E. Zangrando, D. Das,
Inorg. Chem. 2014, 53, 85-96.
4400-4408.
23] G. Mercey, T. Verdelet, J. Renou, M. Kliachyna, R. Baati, F. Nachon, L.
Jean, P.-Y. Renard, Acc. Chem. Res. 2012, 45, 756-766.
[
[
4]
5]
a) Z. Pang, C.-M. J. Hu, R. H. Fang, B. T. Luk, W. Gao, F. Wang, E.
Chuluun, P. Angsantikul, S. Thamphiwatana, W. Lu, X. Jiang, L. Zhang,
ACS Nano 2015, 9, 6450-6458; b) J. E. Casida, G. B. Quistad, Chem.
Res. Toxicol. 2004, 17, 983-998.
24] J. Peters, N. Martinez, M. Trovaslet, K. Scannapieco, M. M. Koza, P.
Masson, F. Nachon, Phys. Chem. Chem. Phys. 2016, 18, 12992-13001.
25] a) Y. Miao, N. He, J.-J. Zhu, Chem. Rev. 2010, 110, 5216-5234; b) L.
Peng, G. Zhang, D. Zhang, J. Xiang, R. Zhao, Y. Wang, D. Zhu, Org.
Lett. 2009, 11, 4014-4017.
a) H.-J. Yeom, C.-S. Jung, J. Kang, J. Kim, J.-H. Lee, D.-S. Kim, H.-S.
Kim, P.-S. Park, K.-S. Kang, I.-K. Park, J. Agric. Food Chem. 2015, 63,
2241-2248; b) H.-J. Yeom, J. S. Kang, G.-H. Kim, I.-K. Park, J. Agric.
Food Chem. 2012, 60, 7194-7203.
7
This article is protected by copyright. All rights reserved.