The Mechanism of Catalysis by Protein-tyrosine Phosphatase 1B
22. Evdokimov, A. G., Pokross, M., Walter, R., Mekel, M., Cox, B., Li, C.,
Several general conclusions are revealed by the step-by-step
analysis. The leaving group propensity in the first catalytic step
is modulated by Asp181 through an interaction that is con-
trolled by motions of a protein loop. In contrast, the pKa of the
Cys251 thiol (the nucleophile in the first step, the leaving group
Bechard, R., Genbauffe, F., Andrews, R., Diven, C., Howard, B., Rastogi, V.,
Gray, J., Maier, M., and Peters, K. G. (2006) Acta Crystallogr. D 62,
1435–1445
23. Zhang, M., Zhou, M., Van Etten, R. L., and Stauffacher, C. V. (1997) Bio-
chemistry 36, 15–23
in the second) is controlled by a hydrogen bond in a fixed struc- 24. Davies, D. R., and Hol, W. G. (2004) FEBS Lett. 577, 315–321
25. Baxter, N. J., Olguin, L. F., Golicnik, M., Feng, G., Hounslow, A. M., Ber-
tural element that is unchanged throughout the catalytic cycle.
mel, W., Blackburn, G. M., Hollfelder, F., Waltho, J. P., and Williams, N. H.
The unusually low pKa makes catalytic sense in the second step,
(2006) Proc. Natl. Acad. Sci. U.S.A. 103, 14732–14737
in which Cys215 is a leaving group. The first step would logically
26. Fauman, E. B., Yuvaniyama, C., Schubert, H. L., Stuckey, J. A., and Saper,
be assisted by a weakened hydrogen bond that would raise this
pKa, but the evidence from the structures is that the low pKa is
fixed. Lys120 hydrogen-bonds to key residues involved in catal-
ysis, but its main function may remain in structural and pro-
tein-protein interactions. This may be an important factor for
development of PTP inhibitors. The transition states of the two
catalytic steps are indicated to be essentially identical. A struc-
tural rationale for the role of Gln262 in the second catalytic step,
but not the first, is now evident.
M. A. (1996) J. Biol. Chem. 271, 18780–18788
27. Lu, Z., Dunaway-Mariano, D., and Allen, K. N. (2008) Proc. Natl. Acad. Sci.
U.S.A. 105, 5687–5692
28. Ala, P. J., Gonneville, L., Hillman, M. C., Becker-Pasha, M., Wei, M., Reid,
B. G., Klabe, R., Yue, E. W., Wayland, B., Douty, B., Polam, P., Wasserman,
Z., Bower, M., Combs, A. P., Burn, T. C., Hollis, G. F., and Wynn, R. (2006)
J. Biol. Chem. 281, 32784–32795
29. Pannifer, A. D., Flint, A. J., Tonks, N. K., and Barford, D. (1998) J. Biol.
Chem. 273, 10454–10462
30. Barford, D., Flint, A. J., and Tonks, N. K. (1994) Science 263, 1397–1404
31. Pedersen, A. K., Peters, G. H., Møller, K. B., Iversen, L. F., and Kastrup, J. S.
(2004) Acta Crystallogr. D 60, 1527–1534
Acknowledgment—We thank Dr. N. K. Tonks for providing the plas-
mid encoding the wild type PTP1B.
32. Barford, D., Keller, J. C., Flint, A. J., and Tonks, N. K. (1994) J. Mol. Biol.
239, 726–730
33. Hoff, R. H., Hengge, A. C., Wu, L., Keng, Y. F., and Zhang, Z. Y. (2000)
Biochemistry 39, 46–54
REFERENCES
34. Cleland, W. W. (2006) in Isotope Effects in Chemistry and Biology (Kohen,
A., and Limbach, H. H., eds) pp. 915–930, CRC Press, Inc., Boca Raton, FL
35. Hengge, A. C. (2002) Acc. Chem. Res. 35, 105–112
36. Hengge, A. C., Sowa, G. A., Wu, L., and Zhang, Z. Y. (1995) Biochemistry
34, 13982–13987
1. Barford, D., Das, A. K., and Egloff, M. P. (1998) Annu. Rev. Biophys. Biomol.
Struct. 27, 133–164
2. Zhang, Z. Y. (1998) Crit. Rev. Biochem. Mol. Biol. 33, 1–52
3. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A.,
Godzik, A., Hunter, T., Dixon, J., and Mustelin, T. (2004) Cell 117,
699–711
37. Rigaku Corp. (2006) CrystalClear: An Integrated Program for the Collec-
tion and Processing of Area Detector Data, Version 1.3.6 SP3 r6, Rigaku
Corp., Tokyo
4. Hunter, T. (2000) Cell 100, 113–127
38. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Sto-
roni, L. C., and Read, R. J. (2007) J. Appl. Crystallogr. 40, 658–674
39. Bailey, S. (1994) Acta Crystallogr. D 50, 760–763
5. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy,
A. L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C. C., Ram-
achandran, C., Gresser, M. J., Tremblay, M. L., and Kennedy, B. P. (1999)
Science 283, 1544–1548
40. Potterton, E., Briggs, P., Turkenburg, M., and Dodson, E. (2003) Acta
Crystallogr. D 59, 1131–1137
6. Zhang, S., and Zhang, Z. Y. (2007) Drug Discov. Today 12, 373–381
7. Johnson, T. O., Ermolieff, J., and Jirousek, M. R. (2002) Nat. Rev. Drug
Discov. 1, 696–709
41. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., Mc-
Coy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and
Terwilliger, T. C. (2002) Acta Crystallogr. D 58, 1948–1954
42. Painter, J., and Merritt, E. A. (2006) Acta Crystallogr. D 62, 439–450
43. Emsley, P., and Cowtan, K. (2004) Acta Crystallogr. D 60, 2126–2132
44. Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang,
X., Murray, L. W., Arendall, W. B., 3rd, Snoeyink, J., Richardson, J. S., and
Richardson, D. C. (2007) Nucleic Acids Res. 35, W375–W383
45. DeLano, W. L. (2007) The PyMOL Molecular Graphics System, Version
1.0r2, DeLano Scientific LLC, Palo Alto, CA
8. Haj, F. G., Markova, B., Klaman, L. D., Bohmer, F. D., and Neel, B. G. (2003)
J. Biol. Chem. 278, 739–744
9. Zhang, Z. Y. (2002) Annu. Rev. Pharmacol. Toxicol. 42, 209–234
10. Ostman, A., Hellberg, C., and Bo¨hmer, F. D. (2006) Nat. Rev. Cancer 6,
307–320
11. Bialy, L., and Waldmann, H. (2005) Angew. Chem. Int. Ed. Engl. 44,
3814–3839
12. DeVinney, R., Steele-Mortimer, O., and Finlay, B. B. (2000) Trends Micro-
biol. 8, 29–33
46. Salmeen, A., Andersen, J. N., Myers, M. P., Tonks, N. K., and Barford, D.
(2000) Mol. Cell 6, 1401–1412
13. Nandan, D., and Reiner, N. E. (2005) Clin. Immunol. 114, 266–277
14. Rye, C. S., and Baell, J. B. (2005) Curr. Med. Chem. 12, 3127–3141
15. Shen, K., Keng, Y. F., Wu, L., Guo, X. L., Lawrence, D. S., and Zhang, Z. Y.
(2001) J. Biol. Chem. 276, 47311–47319
47. Schubert, H. L., Fauman, E. B., Stuckey, J. A., Dixon, J. E., and Saper, M. A.
(1995) Protein Sci. 4, 1904–1913
48. Andersen, H. S., Iversen, L. F., Jeppesen, C. B., Branner, S., Norris, K.,
Rasmussen, H. B., Møller, K. B., and Møller, N. P. (2000) J. Biol. Chem. 275,
7101–7108
16. Lad, C., Williams, N. H., and Wolfenden, R. (2003) Proc. Natl. Acad. Sci.
U.S.A. 100, 5607–5610
17. Wolfenden, R. (1978) in Transition States of Biochemical Processes (Gan- 49. Guo, X. L., Shen, K., Wang, F., Lawrence, D. S., and Zhang, Z. Y. (2002)
dour, R. D., and Schowen, R. L., eds) pp. 555–578, Plenum Press, New York
18. Pedersen, A. K., Guo, X. L., Møller, K. B., Peters, G. H., Andersen, H. S.,
Kastrup, J. S., Mortensen, S. B., Iversen, L. F., Zhang, Z. Y., and Møller,
N. P. (2004) Biochem. J. 378, 421–433
J. Biol. Chem. 277, 41014–41022
50. Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F.,
Olsen, O. H., Jansen, P. G., Andersen, H. S., Tonks, N. K., and Møller, N. P.
(2001) Mol. Cell. Biol. 21, 7117–7136
19. Jia, Z., Barford, D., Flint, A. J., and Tonks, N. K. (1995) Science 268, 51. Li, S., Depetris, R. S., Barford, D., Chernoff, J., and Hubbard, S. R. (2005)
1754–1758
Structure 13, 1643–1651
20. Branda˜o, T. A., Robinson, H., Johnson, S. J., and Hengge, A. C. (2009)
J. Am. Chem. Soc. 131, 778–786
52. Melander, L., and Saunders, W. H. (1987) Reaction Rates of Isotopic Mol-
ecules, pp. 1–3, Robert E. Krieger, Malabar, FL
21. Denu, J. M., Lohse, D. L., Vijayalakshmi, J., Saper, M. A., and Dixon, J. E. 53. Du, X., and Sprang, S. R. (2009) Biochemistry 48, 4538–4547
(1996) Proc. Natl. Acad. Sci. U.S.A. 93, 2493–2498
54. Humphry, T., Forconi, M., Williams, N. H., and Hengge, A. C. (2004)
15882 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 285•NUMBER 21•MAY 21, 2010