730 JOURNAL OF CHEMICAL RESEARCH 2015
References
1
J. Jiao, L.X. Nguyen, D.R. Patterson and R.A. Flowers, Org. Lett., 2007,
9, 1323.
2
3
4
S. Zhang, L. Xu and M.L. Trudell, Synthesis, 2005, 11, 1757.
E.J. Corey and J.W. Suggs, Tetrahedron Lett., 1975, 16, 2647.
A. Shaabania, P. Mirzaeia, S. Naderia and D.G. Leeb, Tetrahedron, 2004,
60, 11415.
5
6
J.E. Steves and S.S. Stahl, J. Am. Chem. Soc., 2013, 135, 15742.
M. Shibuya, M. Tomizawa, I. Suzuki and Y. Iwabuchi, J. Am. Chem. Soc.,
2006, 128, 8412.
7
8
9
M. Angelin, M. Hermansson, H. Dong and O. Ramström, Eur. J. Org.
Chem., 2006, 19, 4323
K. Surendra, K.N. Srilakshmi, M.A. Reddy, Y.V.D. Nageswar and K.R.
Rao. J. Org. Chem., 2003, 68, 2058
J.S. Yadav, B.V.S. Reddy, A.K. Basak and A.V. Narsaiah, Tetrahedron,
2004, 60, 2131.
10 N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. USA, 2006, 103, 15729.
11 X.H. Li and M. Antonietti, Chem. Soc. Rev., 2013, 42, 6593.
12 Z.J. Wang, S. Ghasimi, K. Landfester and K.A.I. Zhang, Chem. Mater.,
2015, 27, 1921.
Fig. 2 Mechanism for the photocatalytic oxidation of alcohols.
13 Q. Xiao, S. Sarina, E. Jaatinen, J. Jia, D.P. Arnold, H. Liu and H. Zhu,
Green Chem., 2014, 16, 4272
14 Q. Xiao, S. Sarina, A. Bo, J. Jia, H. Liu, D.P. Arnold, Y. Huang, H. Wu and
H. Zhu, ACS Catal., 2014, 4, 1725.
15 S. Sarina, H. Zhu, Q. Xiao, E. Jaatinen, J. Jia, Y. Huang, Z. Zheng and H.
Wu, Angew Chem. Int. Ed., 2014, 53, 2935.
16 S.H. Lee, J.H. Kim and C.B. Park, Chem. Eur. J., 2013, 19, 4392.
17 C. Yu, G. Li, S. Kumar, K. Yang and R. Jin, Adv. Mater., 2014, 26, 892
18 J. Zhao, C. Chen and W. Ma. Top Catal., 2005, 35, 269
19 S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue and
Y.J. Sakata, Catalysis, 2009, 266, 279.
20 S. Choi, A.M. Berhane, A. Gentle, T. Cuong, M.R. Phillips and I.
Aharonovich, ACS Appl. Mater. Interfaces, 2015, 7, 5619
21 H. Arora, P.E. Malinowski, A. Chasin, D. Cheyns, S. Steudel, S. Schols and
P. Heremans, Appl. Phys. Lett., 2015, 106, 143301
influenced the oxidation reactions and moderate to low yields
of target ketones were obtained (Table 3, entries 4 and 5). For
diphenylmethanol 3f, the reaction can proceed smoothly to
furnish benzophenone 4f in excellent yield (Table 3, entry 6). In
addition, aryl cyclohexanol and cyclopentanol moieties could be
smoothly oxidised to the corresponding products in good yields
(Table 3, entries 7 and 8).
The photocatalytic process of the 3D-RGO/ZnO catalyst for
the oxidation of alcohols is shown in Fig. 2. First, the electron
was induced and transferred to the surface of nano ZnO under
the irradiation of visible light. Then the photo-exited electron
transfer to the substrate molecule was achieved through the
3D-RGO network. Finally, the corresponding aldehydes or
ketones can be formed with the participation of oxygen.
22 MH Dehghaniab and P Mahdavia, Desalin Water Treat., 2015, 54, 3464
23 K. Chennakesavulua, M.M. Reddy, G.R. Reddy, A.M. Rabel, J. Brijitta,
V. Vinita, T. Sasipraba and J. Sreeramulu. J. Mol. Struct., 2015, 1091, 49
24 M.V. Morales, E. Asedegbega-Nieto, A. Iglesias-Juez, I. Rodriguez-Ramos
and A. Guerrero-Ruiz, Chem. Sus. Chem., 2015, 8, 2223
Conclusion
We prepared a 3D-RGO/ZnO photocatalyst through an in
situ reduction of GO and the growth of nano ZnO particles.
The 3D-RGO/ZnO displayed an enhanced photocatalytic
effect towards commercial ZnO nanoparticles and can be
applied to the oxidation of a broad series of benzyl alcohols
including primary and secondary alcohols to the corresponding
carbonyl compounds under the irradiation of visible light.
A plausible photocatalytic mechanism referring to photo
electron generation and transfer has been proposed. Further
studies on the application of 3D-RGO/ZnO catalyst, such as
photodegradation, are in progress.
25 C.D. Zangmeister, Chem. Mater., 2010, 22, 5625
26 D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotech.,
2008, 3, 101
27 Y. Xu, K. Sheng, C. Li and G Shi, ACS Nano., 2010, 4, 4324
28 S. Stankovich, D.A. Dikin, D.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney,
E.A. Stach, P.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 2006, 442, 282
29 T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-
Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S.
Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prudhomne and L.C. Brinson, Nat.
Nanotech., 2008, 3, 327
30 M. Liu, J. Song, S. Shuang, C. Dong, J.D. Brennan and Y.A. Li, ACS Nano,
2014, 8, 5564
31 M.F. Elkady, V. Strong, S. Dubin and R.B. Kaner, Science, 2012, 335, 1326
32 V. Tjioa, J. Chua, S.S. Pramana, J. Wei, S.G. Mhaisalkar and N. Mathews,
ACS Appl. Mater. Interfaces, 2012, 4, 3447
33 H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun and
R.S. Ruoff, Adv. Funct. Mater., 2012, 22, 4421
This work was supported by Innovation and Promotion
of Science-Technology Project of Zhejiang Province and
Department of Education of Zhejiang Province of China under
grant no. 20070546.
34 C. Hu, Z. Mou, G. Lu, N. Chen, Z. Dong, M. Hu and L. Qu, Phys. Chem.
Chem. Phys., 2013, 5, 13038
Received 6 August 2015; accepted 3 November 2015
Published online: 1 December 2015
35 W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q.
Zhang, B. Wei and P.M. Ajayan, Nature Nanotech., 2011, 6, 496
36 Y. Xu, K. Sheng, C. Li and G. Shi, ACS Nano., 2010., 4, 4324