Inorganic Chemistry
Communication
9593−9597. (e) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. Base-
Free, Acceptorless, and Chemoselective Alcohol Dehydrogenation
Catalyzed by an Amide-Derived NNNRuthenium(II) Hydride Com-
plex. Organometallics 2013, 32, 2046−2049. (f) Delgado-Rebollo, M.;
Canseco-Gonzalez, D.; Hollering, M.; Mueller-Bunz, H.; Albrecht, M.
Synthesis and Catalytic Alcohol Oxidation and Ketone Transfer
Hydrogenation Activity of Donor-Functionalized Mesoionic Triazoly-
lidene Ruthernium (II) Complexes. Dalton Trans. 2014, 43, 4462−
4473. (g) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. Mechanism of
N, N,N-Amide Ruthenium(II) Hydride Mediated Acceptorless Alcohol
Dehydrogenation: Inner-Sphere β-H Elimination versus Outer-Sphere
Bifunctional Metal−Ligand Cooperativity. ACS Catal. 2015, 5, 5468−
5485. (h) Dutta, I.; Sarbajna, A.; Pandey, P.; Rahaman, S. M. W.; Singh,
K.; Bera, J. K. Acceptorless Dehydrogenation of Alcohols on a
Diruthenium(II,II) Platform. Organometallics 2016, 35, 1505−1513.
(3) (a) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R. Dehydrogenative
Oxidation of Alcohols in Aqueous Media Using Water-Soluble and
Reusable Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand. J. Am.
Chem. Soc. 2012, 134, 3643−3646. (b) Zeng, G.; Sakaki, S.; Fujita, K.-i.;
Sano, H.; Yamaguchi, R. Efficient Catalyst for Acceptorless Alcohol
Dehydrogenation: Interplay of Theoretical and Experimental Studies.
ACS Catal. 2014, 4, 1010−1020. (c) Ngo, A. H.; Adams, M. J.; Do, L. H.
Selective Acceptorless Dehydrogenation and Hydrogenation by Iridium
Catalysts Enabling Facile Interconversion of Glucocorticoids. Organo-
(10) (a) Daw, P.; Ben-David, Y.; Milstein, D. Direct Synthesis of
Benzimidazoles by Dehydrogenative Coupling of Aromatic Diamines
and Alcohols Catalyzed by Cobalt. ACS Catal. 2017, 7, 7456−7460.
(b) Midya, S. P.; Landge, V. G.; Sahoo, M. K.; Rana, J.; Balaraman, E.
Cobalt-Catalyzed Acceptorless Dehydrogenative Coupling of Amino-
alcohols with Alcohols: Direct Access to Pyrrole, Pyridine and Pyrazine
Derivatives. Chem. Commun. 2018, 54, 90−93. (c) Mastalir, M.; Tomsu,
G.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Co(II) PCP Pincer
Complexes as Catalysts for the Alkylation of Aromatic Amines with
Primary Alcohols. Org. Lett. 2016, 18, 3462−3465. (d) Zhang, G.; Wu,
J.; Zeng, H.; Zhang, S.; Yin, Z.; Zheng, S. Cobalt-Catalyzed α-Alkylation
of Ketones with Primary Alcohols. Org. Lett. 2017, 19, 1080−1083.
(e) Rosler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Cobalt-Catalyzed
̈
Alkylation of Aromatic Amines by Alcohols. Angew. Chem., Int. Ed. 2015,
54, 15046−15050.
(11) (a) Talay, R.; Rehder, D. Carbonylvanadium, Manganese and
Molybdenum Complexes of the Ligands o-C6H4EPh2(E’Ph2) (E, E’ = P,
As, Sb, Bi) and Cis-Ph2PCH = CHPPh2. Z. Naturforsch., B: Anorg. Chem.
1981, 36, 451−462. (b) Tamm, M.; Dreβel, B.; Baum, K.; Lugger, T.;
̈
Pape, T. Synthesis and Structural Characterization of Molybdenum
Complexes with Linked Cycloheptatrienyl−phosphane Ligands. J.
Organomet. Chem. 2003, 677, 1−9.
(12) Mankad, N. P.; Rivard, E.; Harkins, S. B.; Peters, J. C. Structural
Snapshots of a Flexible Cu2P2 Core that Accommodates the Oxidation
States CuICuI, Cu1.5Cu1.5, and CuIICuII. J. Am. Chem. Soc. 2005, 127,
16032−16033.
metallics 2014, 33, 6742−6745. (d) Jimen
́ ́
ez, M. V.; Fernandez-Tornos,
J.; Modrego, F. J.; Perez-Torrente, J. J.; Oro, L. A. Oxidation and b-
́
(13) See Table S1 for the metrical parameters for the crystal structures
of 2−4.
Alkylation of Alcohols Catalysed by Iridium(I) Complexes with
Functionalised N−Heterocyclic Carbene Ligands. Chem. - Eur. J.
(14) (a) Beck, J. P.; Gaigeot, M. P.; Lisy, J. M. Anharmonic Vibrations
of N−H in Cl−(N-methylacetamide)1(H2O)0−2Ar2 Cluster ions.
Combined IRPD Experiments and BOMD Simulations. Phys. Chem.
Chem. Phys. 2013, 15, 16736−16745. (b) Fujita, J.; Nakamoto, K.;
Kobayashi, M. Infrared Spectra of Metallic Complexes. I. The Effect of
Coordination on the Infrared Spectra of Ammine, Rhodanato and Azido
Complexes. J. Am. Chem. Soc. 1956, 78, 3295−3297.
2015, 21, 17877−17889. (e) Gulcemal, S.; Gulcemal, D.; Whitehead, G.
̈
̈
F. S.; Xiao, J. Acceptorless Dehydrogenative Oxidation of Secondary
Alcohols Catalyzed by Cp*IrIII-NHC Complexes. Chem. - Eur. J. 2016,
22, 10513−10522. (f) Valencia, M.; Muller-Bunz, H.; Gossage, R. A.;
̈
Albrecht, M. Enhanced Product Selectivity Promoted by Remote Metal
Coordination in Acceptor-Free Alcohol Dehydrogenation Catalysis.
Chem. Commun. 2016, 52, 3344−3347.
(15) For complex 2 with two Cl atoms, 3 equiv of KOtBu was required
to achieve the optimized results (92% yield of 4′-methoxyacetophe-
none). Only 25% yield was recorded when 2 equiv of KOtBu was used.
One possible explanation is that excess halide salt in the system may have
negative effects on alcohol dehydrogenation because of the formation of
inactive species. Thus, a slight excess of base is required to reactivate the
catalyst. See the following example: Nguyen, D. H.; Trivelli, X.; Capet,
F.; Paul, J.-F.; Dumeignil, F.; Gauvin, R. M. Manganese Pincer
Complexes for the Base-Free, Acceptorless Dehydrogenative Coupling
of Alcohols to Esters: Development, Scope, and Understanding. ACS
Catal. 2017, 7, 2022−2032.
(4) (a) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.;
Gusev, D. G. Osmium and Ruthenium Catalysts for Dehydrogenation of
Alcohols. Organometallics 2011, 30, 3479−3482. (b) Bertoli, M.;
Choualeb, A.; Gusev, D. G.; Lough, A. J.; Major, Q.; Moore, B. PNP
Pincer Osmium Polyhydrides for Catalytic Dehydrogenation of Primary
Alcohols. Dalton Trans. 2011, 40, 8941−8949.
(5) (a) Zhang, G.; Hanson, S. K. Cobalt-Catalyzed Acceptorless
Alcohol Dehydrogenation: Synthesis of Imines from Alcohols and
Amines. Org. Lett. 2013, 15, 650−653. (b) Zhang, G.; Vasudevan, K. V.;
Scott, B. L.; Hanson, S. K. Understanding the Mechanisms of Cobalt-
Catalyzed Hydrogenation and Dehydrogenation Reactions. J. Am.
Chem. Soc. 2013, 135, 8668−8681.
(16) Rosler, S.; Obenauf, J.; Kempe, R. A Highly Active and Easily
̈
Accessible Cobalt Catalyst for Selective Hydrogenation of C = O Bonds.
J. Am. Chem. Soc. 2015, 137, 7998−8001.
(6) (a) Chakraborty, S.; Brennessel, W. W.; Jones, W. D. A Molecular
Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation
of N−Heterocycles. J. Am. Chem. Soc. 2014, 136, 8564−8567.
(b) Chakraborty, S.; Lagaditis, P. O.; Forster, M.; Bielinski, E. A.;
̈
Hazari, N.; Holthausen, M. C.; Jones, W. D.; Schneider, S. Well-Defined
Iron Catalysts for the Acceptorless Reversible Dehydrogenation-
Hydrogenation of Alcohols and Ketones. ACS Catal. 2014, 4, 3994−
4003. (c) Bonitatibus, P. J., Jr.; Chakraborty, S.; Doherty, M. D.;
Siclovan, O.; Jones, W. D.; Soloveichik, G. L. Reversible Catalytic
Dehydrogenation of Alcohols for Energy Storage. Proc. Natl. Acad. Sci.
U. S. A. 2015, 112, 1687−1692.
(7) Chakraborty, S.; Piszel, P. E.; Brennessel, W. W.; Jones, W. D. A
Single Nickel Catalyst for the Acceptorless Dehydrogenation of
Alcohols and Hydrogenation of Carbonyl Compounds. Organometallics
2015, 34, 5203−5206.
(8) Song, H.; Kang, B.; Hong, S. H. Fe-Catalyzed Acceptorless
Dehydrogenation of Secondary Benzylic Alcohols. ACS Catal. 2014, 4,
2889−2895.
(9) Kamitani, M.; Ito, M.; Itazaki, M.; Nakazawa, H. Effective
Dehydrogenation of 2-Pyridylmethanol Derivatives Catalyzed by an
Iron Complex. Chem. Commun. 2014, 50, 7941−7944.
D
Inorg. Chem. XXXX, XXX, XXX−XXX