10.1002/anie.201801660
Angewandte Chemie International Edition
COMMUNICATION
[4]
[5]
[6]
a) H. Wang, Y. Cheng, P. Becker, G. Raabe, C Bolm, Angew. Chem.
2016, 128, 12845; Angew. Chem. Int. Ed. 2016, 55, 12655; b) For
related derivatives, see: H. Wang, D. Zhang, H. Sheng, C. Bolm, J. Org.
Chem. 2017, 82, 11854.
Soc. 2013, 135, 11521; e) Q. Qin, S. Yu, Org. Lett. 2014, 16, 3504; d) J.
Davies, T. D. Svejstrup, D. F. Reina, N. S. Sheikh, D. Leonori. J. Am.
Chem. Soc. 2016, 138, 8092; f) J. C. K. Chu, T. Rovis, Nature 2016,
539, 272; g) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles,
Nature 2016, 539, 268; h) T. W. Greulich, C. G. Daniliuc, A. Studer, Org.
Lett. 2015, 17, 254; i) K. Miyazawa, T. Koike, M. Akita, Chem. Eur. J.
2015, 21, 11677; j) H. Kim, T. Kim, D. G. Lee, S. W. Roh, C. Lee, Chem.
Commun. 2014, 50, 9273; k) L. Song, L. Zhang, S. Luo, J.-P. Cheng,
Chem. Eur. J. 2014, 20, 14231; l) J. Davies, S. G. Booth, S. Essafi, R.
A. W. Dryfe, D. Leonori, Angew. Chem. 2015, 127, 14223 Angew.
Chem. Int. Ed. 2015, 54, 14017; m) W. Shu, C. Nevado, Angew. Chem.
2017, 129, 1907. Angew. Chem. Int. Ed. 2017, 56, 1881; n) E. M.
Dauncey, S. P. Morcillo, J. J. Douglas, N. S. Sheikh, D. Leonori, Angew.
Chem. 2018, 130, 752. Angew. Chem. Int. Ed. 2018, 57, 744.
a) T. Akasaka, N. Furukawa, S. Oae, Tetrahedron Lett. 1979, 20, 2035;
b) W. A. Wasylenko, N. Kebede, B. M. Showalter, N. Matsunaga, A. P.
Miceli, Y. Liu, L. R. Ryzhkov, C. M. Hadad, J .P. Toscano, J. Am. Chem.
Soc. 2006, 128, 13142.
For selected reviews: a) T. Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45,
3069; b) S. B. Höfling, M. R. Heinrich, Synthesis 2011, 173; c) S. Z.
Zard, Synlett 1996, 1148; d) S. Z. Zard, Chem. Soc. Rev. 2008, 37,
1603; e) L. Stella, Angew. Chem. 2003, 95, 368; Angew. Chem. Int. Ed.
Engl. 2003, 22, 337; f) G. J. Rowlands, Tetrahedron 2010, 66, 1593; g)
L. Stella, Heteroatom-Centered Radicals. In Radicals in Organic
Synthesis (Eds: P. Renaud; M. P. Sibi), Wiley-VCH Verlag GmbH,
Weinheim, 2008.
[10] Although the reaction path depicted here is in line with previously
suggested mechanisms (comp. refs. 8e and 8g as well as the
references therein), we cannot exclude the involvement of free radical
chain reactions at this stage. Furthermore, a very different route was
suggested by a reviewer, whom we gratefully acknowledge: Excited
Ru(bpy)3 could oxidize substrate C leading to an aromatic radical cation.
The reduced photocatalyst then transfered an electron onto 1 to give
nitrogen radical B, which could abstract a hydrogen atom from the
radical cation providing F and D. Finally, the latter two intermediates
combined to provide product G.
[7]
For selected examples, see: a) K. Shen, Q. Wang, J. Am. Chem. Soc.
2017, 139, 13110; b) D. Wang, L. Wu, F. Wang, X. Wang, P. Chen, Z.
Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 6811; c) R. K. Quinn, Z. A
Könst, S. E. Michalak, Y. Schmidt, A. R. Szklarski, A. R. Flores, S. Nam,
D. A. Horne, C. D. Vanderwal, E. J. Alexanian, J. Am. Chem. Soc. 2016,
138, 696; d) K. Shen, Q. Wang, Chem. Sci. 2015, 6, 4279; e) L. Song,
L. Zhang, S. Luo, J. P. Cheng, Chem. – Eur. J. 2014, 20, 14231; f) B.
Zhang, A. Studer, A. Org. Lett. 2014, 16, 1790; g) Z. Liu, Z.-Q. Liu, Org.
Lett. 2017, 19, 5649; h) J. Guin, C. Mück-Lichtenfeld, S. Grimme, A.
Studer, J. Am. Chem. Soc. 2007, 129, 4498.
[11] a) H. Zhang, W. Pu, T. Xiong, Y. Li, X. Zhou, K. Sun, Q. Liu, Q. Zhang,
Angew. Chem. 2013, 125, 2589; Angew. Chem. Int. Ed. 2013, 52, 2529;
b) E. Ito, T. Fuku-shima, T. Kawakami, K. Murakami, K. Itami, Chem.
2017, 2, 383; c) Z. Ni, Q. Zhang, T. Xiong, Y. Zheng, Y. Li, H. Zhang, J.
Zhang, Q. Liu, Angew. Chem. 2012, 124, 1270; Angew. Chem. Int. Ed.
2012, 51, 1244; d) H. Zhang, Y. Song, J. Zhao, J. Zhang, Q. Zhang,
Angew. Chem. 2014, 126, 11259; Angew. Chem. Int. Ed. 2014, 53,
11079; Perspective: e) K. Murakami, G. J. P. Perry, K. Itami, Org.
Biomol. Chem. 2017, 15, 6071.
[8]
For selected reviews, see: a) T. P. Yoon, M. A. Ischay, J. Du, Nat.
Chem. 2010, 2, 527; b) J. M. R. Narayanam, C. R. J. Stephenson,
Chem. Soc. Rev. 2011, 40, 102; c) J. Xuan, W.-J. Xiao, Angew. Chem.
2012, 124, 6934; Angew. Chem. Int. Ed. 2012, 51, 6828; d) L. Shi, W.
Xia, Chem. Soc. Rev. 2012, 41, 7687; e) M. Reckenthäler, A. G.
Griesbeck, Adv. Synth. Catal. 2013, 355, 2727; f) C. K. Prier, D. A.
Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; g) D. M.
Schultz, T. P. Yoon, Science 2014, 343, 985; h) Y. Xi, H. Yi, A. Lei, Org.
Biomol. Chem. 2013, 11, 2387; i) J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J.
Xiao, Chem. Soc. Rev. 2016, 45, 2044; j) M. N. Hopkinson, B. Sahoo,
J.-L. Li, F. Glorius, Chem. Eur. J. 2014, 20, 3874; k) N. A. Romero, D. A.
Nicewicz, Chem. Rev. 2016, 116, 10075; l) Y. Lang, J. Zhao, X. Chen,
Chem. Soc. Rev. 2016, 45, 3016; m) D. Arias-Rotondo, J. K. McCusker,
Chem. Soc. Rev. 2016, 45, 5803; n) T. P. Nicholls, D. Leonori, A. C.
Bissember, Nat. Prod. Rep. 2016, 33, 1248; o) D. Staveness, I. Bosque,
C. R. Stephenson, Acc. Chem. Res. 2016, 49, 2295; p) J.-R. Chen, X.-
Q. Hu, L.-Q. Lu, W.-J. Xiao, Acc. Chem. Res. 2016, 49, 1911; q) M. H.
Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898.
For selected examples, see: a) A. R. Forrester, M. Gill, R. H. Thomson,
J. Chem. Soc. Perkin Trans. 1. 1979, 621; b) Y. Takeda, J. Hayakawa,
K. Yano, S. Minakata, Chem. Lett. 2012, 41, 1672; c) L. J. Allen, P. J.
Cabrera, M. Lee, M. S. Sanford, J. Am. Chem. Soc. 2014, 136, 5607; d)
G. Cecere, C. M. Konig, J. L. Alleva, D. W. C. MacMillan, J. Am. Chem.
[12] Treatment of N-methylbenzamide 14 with 1 in CD3CN for 24 h did not
lead to any detectable change of the 1H NMR spectrum, suggesting that
15 did not interfere in the radical pathways (for details, see Supporting
Information).
TOC
Me
O
Ph
Photoredox
Catalysis
H
S
[9]
N
N
I
Ph
Me
+
R
S
OMs
Ar
R
Ph
Ar
O
HAT
R = aryl, alkyl, CN, COOR, alkynyl
.
This article is protected by copyright. All rights reserved.