Chemistry - A European Journal
10.1002/chem.201802830
COMMUNICATION
photocatalyts 4a and 4b gave higher conversions than the
F. Garrido-Castro, M. C. Maestro, J. Alemán, Tetrahedron Lett. 2018,
5
9, 1286.
K. P. Christopher, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013,
13, 5322.
Fukuzumi´s catalyst III under the same conditions (17 h, 67 and
[
2]
9
9% vs. 33%; Scheme 4, eq. b). In addition, although acridinium
1
salts are known to be weak reductants, the reduction of the
[
[
3]
4]
N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075.
a) K. A. Margrey, D. A. Nicewicz, Acc. Chem. Res. 2016, 49, 1997; b) A.
J. Perkowski, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135, 10334. c)
K. Ohkubo, T. Kobayashi, S. Fukuzumi, Angew. Chem. Int. Ed. 2011,
50, 8652.
bromo-ketone derivative 11 (E1/2 = -0.49 V vs SCE) with 4 was
[
2]
also challenged. Surprisingly, excellent results were also
obtained in this type of reaction, in which the N-methyl derivative
4
a showed better results than 4b (98% vs. 66% conversion).
Moreover, both photocatalysts 4 proved again to be more active
than III (29% conversion) (Scheme 3, eq. c).
[5]
a) G. Weber, F. W. J. Teale, Trans. Faraday Soc. 1957, 53, 646-655; b)
A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, H. J. van
Ramesdonk, M. M. Groeneveld, H. Zhang, J. W. Verhoeven, J. Am.
Chem. Soc. 2005, 127, 16054.
O
Ph
O
Ph
[
6]
a) T. M. Bockman, J. K. Kochi, J. Phys. Org. Chem. 1997, 10, 542; b) K.
O
N
O
N
Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2006, 110, 3860.
R3
R3
R2
R2
+
Ph3CClO4
[7]
Even if the Ph-Acr-Me catalyst did not show radical-radical reactivity it
dry MeCN, r.t.
is subject to nucleophilic deactivation: D. Zhou, R. Khatmullin, J.
Walpita, N. A. Miller, H. L. Luk, S. Vyas, C. M. Hadad, K. D. Glusac, J.
Am. Chem. Soc. 2012, 134, 11301.
N
R1
3
Yield= 36-79%
N
R1 ClO4
4
[
8]
a) S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. Tkachenko, H.
Lemmetyinen. J. Am. Chem. Soc. 2004, 126, 1600; b) Y.-C. Lin, C.-T.
Chen, Org. Lett. 2009, 11, 4858.
Photocatalytic Reactions[a]
(
a)
III: 30%[b]
III or 4 (2 mol%)
4
a: 83%[b]
b: 93%[b]
[9]
For acridinium C-9-esters with chemiluminescence applications, see
e.g.: Browne, K. A.; Deheyn, D. D.; El-Hiti, G. A.; Smith, K.; Weeks, I. J.
Am. Chem. Soc. 2011, 133, 14637.
MeCN, O2
blue LEDs, 1 h
4
CO2H
O
O
5
7
9
6
(b)
OH
O
III: 28%
[10] For phenyl-C9-acridinium derivatives in photocatalysis, see: L. Chen, H.
Li, P. Li, L. Wang, Org. Lett. 2016, 18, 3646, and references cited
therein.
III or 4 (2 mol%)
Me
Me
4
a: 75%
MeCN, O2
blue LEDs, 1 h
4b: 92%[92%][c]
8
[
11] Selected reviews: a) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011,
111, 1780; b) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem. Int. Ed.
2014, 53, 74; c) Special issue on C-H activation, Chem. Rev. 2017, 117,
8481.
(c)
Me
Br
III or 4 (5 mol%)
Me
OMe
III: 33%
4
a: 67%
DCE, MeOH
NCCHPhCN
blue LEDs, 17 h
MeO
MeO
4b: 99%[80%][c]
MeO
10
O
O
[12] a) T. Stopka, L. Marzo, M. Zurro, S. Janich, E. U. Würthwein, C. G.
Daniliuc, J. Alemán, O. García Mancheño, Angew. Chem. Int. Ed. 2015,
54, 5049. b) H. Richter, R. Fröhlich, C. G. Daniliuc, O. García
Mancheño, Angew. Chem. Int. Ed. 2012, 51, 8656; c) A. Gini, J.
Bamberger, J. Luis-Barrera, M. Zurro, R. Mas-Ballesté, J. Alemán, O.
García Mancheño, Adv. Synth. Catal. 2016, 358, 4049, and references
cited therein.
(d)
III: 29%
III or 4 (5 mol%)
H
a: 98%[56%][c]
4
DMF
4b: 66%
lutidine (2 equiv.) MeO
blue LEDs, 24 h
11
12
[
a]
Scheme 3. Comparative photocatalytic reactions with III, 4a and 4b. ( NMR-
conversions. Isolated yields. NMR yields in brackets)
[
b]
[c]
In conclusion, the designed novel imide-acridinium
organophotocatalysts 4 were prepared in a simple 2-steps
approach by a new oxidative C-H functionalization/Ugi-type
reaction of acridanes, followed by an aromatization process. The
developed oxidative Ugi reaction with benzoyl peroxide, used as
both oxidant and carboxylate source, has allowed the
introduction of a polar functional group at the C9-position.
Furthermore, the methodology is rather flexible and tolerates a
wide range of substituents. In terms of reactivity, the imide-
[
13] a) I. Ugi, R. Meyr, U. Fetzer, C. Steinbrückner, Angew. Chem. 1959, 71,
386; b) J. Alemán, S. Cabrera, C. Alvarado, Recent Advances in the
Ugi Multicomponent Reaction In Multicomponent Reactions: Concepts
and Applications for Design and Synthesis, (Ed. R. P. Herrera, E.
Marqués López), John Wiley & Sons, NJ, 2015, pp. 245.
[
14] a) T. Ngouansavanh, J. Zhu, Angew. Chem. Int. Ed. 2007, 46, 5775; b)
X. Ye, C. Xie, Y. Pan, L. Han, T. Xie, Org. Lett. 2010, 12, 4240; c) M.
Rueping, C. Vila, Org. Lett. 2013, 15, 2092; d) Y. Chen, G. Feng, Org.
Biomol. Chem. 2015, 13, 4260; e) S. U. Dighe, S. Kolle, S. Batra, Eur. J.
Org. Chem. 2015, 4238; f) K. Singh, A. Kaur, V. S. Mithu, S. Sharma, J.
Org. Chem. 2017, 82, 5285.
acridiniums
4 led to a notable higher activity than the
commercially available, commonly used Fukuzumi´s catalyst in
both oxidative and reductive reactions.
[15] a) A. Baeyer, Ber. Dtsch. Chem. Ges. 1871, 4, 555. b) A. V. Dubrovskiy,
R. C. Larock, J. Org. Chem. 2012, 77, 11232. c) T. Tsudaka, H. Kotani,
K. Ohkubo, T. Nakagawa, N. V. Tkachenko, H. Lemmetyinen, S.
Fukuzumi, Chem. Eur. J. 2017, 23, 1306. d) C. Fischer, C. Sparr,
Angew. Chem. Int. Ed. 2018, 57, 2436, and references cited therein.
Acknowledgements
[
[
[
16] C. de Graaff, L. Bensch, M. J. van Lint, E. Ruijter R. V. A. Orru, Org.
Biomol. Chem. 2015, 13, 10108.
The Boehringer Ingelheim Stiftung (Exploration Grant), the
Deutsche Forschungsgemeinschaft (DFG), COST action
CHAOS, Spanish Government (CTQ2015-64561-R), and the
European Research Council (ERC-CG, contract number:
2
17] The Cu(OTf) catalyst was pre-dried at 50-60 °C under high vacuum for
several hours prior use.
18] a) T. Saegusa, Y. Ito, S. Kobayashi, K. Hirota, N. Takeda,. Can J.
Chem. 1968, 47, 1217; b) B. L. Tran, B. Li, M. Driess, J. F. Hartwig, J.
Am. Chem. Soc. 2014, 136, 2555.
6
47550) are gratefully acknowledged for generous support.
[
19] (a) Alternative electrochemical oxidation: A. V. Shchepochkin, O. N.
Chupakhin, V. N. Charushin, D. V. Steglenko, V. I. Minkin, G. L.
Rusinov, I. A. Matern, RSC Adv. 2016, 6, 77834; b) Alternative catalytic
oxidation: S. Fukuzumi, K. Okamoto, Y. Tokuda, C. P. Gros, R. Guilard,
J. Am. Chem. Soc. 2004, 126, 17059.
Keywords: C-H functionalization • Oxidative Ugi reaction •
Acridinium salts • Photocatalysis • Multicomponent
[
1]
a) M. Fagnoni, D. Dondi, D. Ravelli, A. Albini, Chem. Rev. 2007, 107,
725; b) S. Fukuzumi, K. Ohkubo, Chem. Sci. 2013, 4, 561-574; c) J. M.
2
[
20] N. P. Ramirez, I. Bosque, J. C. Gonzalez-Gomez, Org. Lett. 2015, 17,
R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102;
d) E. Meggers, Chem. Commun. 2015, 51, 3290; e) M. H. Shaw, J.
Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898-6926; f) A.
4
550.
[
[
21] H. J. Xu, X. L. Xu, Y. Fu, Y. S. Feng, Chin. Chem. Lett. 2007, 18, 1471.
22] Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134, 18577.
This article is protected by copyright. All rights reserved.