Journal of Materials Chemistry A
Paper
from the perspective of synthetic chemistry as well as green 17 S. Das, S. Biswas, T. Balaraju, S. Barman, R. Pochamoni and
chemistry as the Janus catalyst used here is inexpensive, effi- S. Roy, J. Mater. Chem. A, 2016, 4, 8875–8887.
cient and environmentally friendly. It is also one of the rst 18 S. Biswas, R. Pochamoni and S. Roy, ChemistrySelect, 2018, 3,
examples of how a Janus catalyst can be used in organic 2649–2654.
transformations coupled with carbon dioxide reduction. This 19 S. Roy, CrystEngComm, 2014, 16, 4667–4676.
study can further open up new avenues in the area of catalysis in 20 S. Roy, Comments Inorg. Chem., 2011, 32, 113–126.
the context of CO2 valorization chemistry and organic 21 B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum and
syntheses.
C. P. Kubiak, Annu. Rev. Phys. Chem., 2012, 63, 541–569.
22 B. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo,
K. M. Choi, O. M. Yaghi and G. A. Somorjai, Nano Lett.,
2016, 16, 7645–7649.
Conflicts of interest
There are no conicts to declare.
23 F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær,
J. S. Hummelshøj, S. Dahl, I. Chorkendorff and
J. K. Nørskov, Nat. Chem., 2014, 6, 320.
24 K. U. D. Calvinho, A. B. Laursen, K. M. K. Yap, T. A. Goetjen,
S. Hwang, B. Mejia-Sosa, A. Lubarski, K. M. Teeluck,
N. Murali, E. S. Hall, E. Garfunkel, M. Greenblatt and
G. C. Dismukes, Energy Environ. Sci., 2018, 11, 2550–2559.
25 J. Hawecker, J.-M. Lehn and R. Ziessel, J. Chem. Soc., Chem.
Commun., 1984, 328–330.
Acknowledgements
SR gratefully acknowledges the start-up and FIRE grants from
IISER-Kolkata. The nancial support from CCNU, China and
NSFC is gratefully acknowledged.
References
26 M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, J. Chem.
Soc., Chem. Commun., 1984, 1315–1316.
1 S. Chakravarty, A. Chikkatur, H. De Coninck, S. Pacala,
R. Socolow and M. Tavoni, Proc. Natl. Acad. Sci. U. S. A., 27 R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto,
2009, 106, 11884–11888.
M. Akatsuka, D. Lu, S. Yagi, T. Yoshida, O. Ishitani and
¨
2 S. Garai, H. Bogge, A. Merca, O. A. Petina, A. Grego,
K. Maeda, Angew. Chem., Int. Ed., 2017, 56, 4867–4871.
¨
P. Gouzerh, E. T. Haupt, I. A. Weinstock and A. Muller, 28 K. Muraoka, H. Kumagai, M. Eguchi, O. Ishitani and
Angew. Chem., Int. Ed., 2016, 55, 6634–6637.
K. Maeda, Chem. Commun., 2016, 52, 7886–7889.
3 M. Garcia-Rates, P. Miro, A. Muller, C. Bo and J. B. Avalos, J. 29 H. Kumagai, G. Sahara, K. Maeda, M. Higashi, R. Abe and
Phys. Chem. C, 2014, 118, 5545–5555. O. Ishitani, Chem. Sci., 2017, 8, 4242–4249.
4 A. Muller, P. Kogerler and A. Dress, Coord. Chem. Rev., 2001, 30 C. S. Diercks, S. Lin, N. Kornienko, E. A. Kapustin,
´
¨
¨
¨
222, 193–218.
E. M. Nichols, C. Zhu, Y. Zhao, C. J. Chang and
O. M. Yaghi, J. Am. Chem. Soc, 2018, 140, 1116–1122.
31 K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett,
J. T. D. Barmanbek, A. S. Alshammari, P. Yang and
O. M. Yaghi, J. Am. Chem. Soc, 2016, 139, 356–362.
¨
¨
5 A. Muller, E. Krickemeyer, H. Bogge, M. Schmidtmann and
F. Peters, Angew. Chem., Int. Ed., 1998, 37, 3359–3363.
6 M. Jacobson, W. Colella and D. Golden, Science, 2005, 308,
1901–1905.
7 C. Y. N. Power, Bulletin of the Connecticut Academy of 32 G. Yin, H. Abe, R. Kodiyath, S. Ueda, N. Srinivasan,
Science and Engineering, 2002, vol. 17, p. 1.
8 C. Steinlechner and H. Junge, Angew. Chem., Int. Ed., 2018,
57, 44–45.
9 C. Cometto, R. Kuriki, L. Chen, K. Maeda, T.-C. Lau,
O. Ishitani and M. Robert, J. Am. Chem. Soc., 2018, 140(24),
7437–7440.
A. Yamaguchi and M. Miyauchi, J. Mater. Chem. A, 2017, 5,
12113–12119.
33 L. Astudillo, G. Schmeda-Hirschmann, R. Soto, C. Sandoval,
C. Afonso, M. Gonzalez and A. Kijjoa, World J. Microbiol.
Biotechnol., 2000, 16, 585.
34 A. Casy and A. Parulkar, Can. J. Chem., 1969, 47, 423–427.
10 J. Bian, Y. Qu, X. Zhang, N. Sun, D. Tang and L. Jing, J. Mater. 35 R. W. Souter, J. Chromatogr. A, 1977, 134, 187–190.
Chem. A, 2018, 6, 11838–11845.
36 M. Poirier, N. Curran, K. McErlane and E. Lovering, J. Pharm.
Sci., 1979, 68, 1124–1127.
37 A. B. Pinkerton, J.-M. Vernier, H. Schaauser, B. A. Rowe,
U. C. Campbell, D. E. Rodriguez, D. S. Lorrain,
C. S. Baccei, L. P. Daggett and L. J. Bristow, J. Med. Chem.,
2004, 47, 4595–4599.
11 M. Sun, S. Yan, Y. Sun, X. Yang, Z. Guo, J. Du, D. Chen,
P. Chen and H. Xing, Dalton Trans., 2018, 47, 909–915.
12 Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu and Z. Li,
Angew. Chem., 2012, 124, 3420–3423.
13 M. Pschenitza, S. Meister and B. Rieger, Chem. Commun.,
2018, 54, 3323–3326.
38 V. Sedova and O. Shkurko, Chem. Heterocycl. Compd., 2004,
40, 194–202.
14 S. Somasundaram, C. R. N. Chenthamarakshan, N. R. de
Tacconi and K. Rajeshwar, Int. J. Hydrogen Energy, 2007, 39 X. Lang, X. Chen and J. Zhao, Chem. Soc. Rev., 2014, 43, 473–
32, 4661–4669. 486.
15 S. Barman, S. Das, S. S. S, S. Garai, R. Pochamoni and S. Roy, 40 J. M. Narayanam and C. R. Stephenson, Chem. Soc. Rev.,
Chem. Commun., 2018, 54, 2369–2372. 2011, 40, 102–113.
16 S. Das, S. Kumar, S. Garai, R. Pochamoni, S. Paul and S. Roy, 41 C. K. Prier, D. A. Rankic and D. W. MacMillan, Chem. Rev.,
ACS Appl. Mater. Interfaces, 2017, 9, 35086–35094.
2013, 113, 5322–5363.
20850 | J. Mater. Chem. A, 2018, 6, 20844–20851
This journal is © The Royal Society of Chemistry 2018