Communication
ChemComm
4 (a) J. D. Nguyen, B. S. Matsuura and C. R. J. Stephenson, J. Am. Chem.
JS and TK thank the Deutsche Bundesstiftung Umwelt (DBU)
for a graduate scholarship. KC thanks the Alexander von
Humboldt Foundation for a postdoctoral fellowship. We also
thank Dr R. Vasold and Ms R. Hoheisel for analytic support.
¨
¨
Soc., 2014, 136, 1218; (b) M. D. Karkas, I. Bosque, B. S. Matsuura and
C. R. J. Stephenson, Org. Lett., 2016, 18, 5166; (c) I. Bosque,
¨
¨
G. Magallanes, M. Rigoulet, M. D. Karkas and C. R. J. Stephenson,
¨
¨
ACS Cent. Sci., 2017, 3, 621; (d) G. Magallanes, M. D. Karkas,
I. Bosque, S. Lee, S. Maldonado and C. R. J. Stephenson, ACS Catal.,
2019, 9, 2252.
5 J. Luo, X. Zhang, J. Lu and J. Zhang, ACS Catal., 2017, 7, 5062.
6 N. Luo, M. Wang, H. Li, J. Zhang, H. Liu and F. Wang, ACS Catal.,
2016, 6, 7716.
Conflicts of interest
There are no conflicts to declare.
7 For selected examples of intermolecular catalytic hydrogen transfer
to biomass molecules, see: (a) H. Heeres, R. Handana, C. Dai,
C. B. Rasrendra, B. Girisuta and H. J. Heeres, Green Chem., 2009,
11, 1247; (b) H. Kobayashi, H. Matsuhashi, T. Komanoya, K. Hara
and A. Fukuoka, Chem. Commun., 2011, 47, 2366; (c) S. H. Mushrif,
S. Caratzoulas and D. G. Vlachos, Phys. Chem. Chem. Phys., 2012,
14, 2637; (d) Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu and
J. Xu, Energy Environ. Sci., 2013, 6, 994; (e) A. Shrotri, H. Kobayashi,
A. Tanksale, A. Fukuoka and J. Beltramini, ChemCatChem, 2014,
6, 1349.
8 (a) N. Luo, M. Wang, H. Li, J. Zhang, T. Hou, H. Chen, X. Zhang,
J. Lu and F. Wang, ACS Catal., 2017, 7, 4571; (b) X. Wu, X. Fan, S. Xie,
J. Lin, J. Cheng, Q. Zhang, L. Chen and Y. Wang, Nat. Catal., 2018,
1, 772.
Notes and references
1 (a) J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M. Weckhuysen,
´
´
Chem. Rev., 2010, 110, 3552; (b) C. O. Tuck, E. Perez, I. T. Horvath,
R. A. Sheldon and M. Poliackoff, Science, 2012, 337, 695;
(c) A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen,
M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, P. Langan,
A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G. A. Tuskan and
C. E. Wyman, Science, 2014, 344, 1246843; (d) M. V. Galkin and
J. S. Samec, ChemSusChem, 2016, 9, 1544.
2 For selected examples of C(sp3)–O bond cleavage of lignin system, see:
(a) N. Yan, C. Zhao, P. J. Dyson, C. Wang, L.-T. Liu and Y. Kou,
ChemSusChem, 2008, 1, 626; (b) J. M. Nichols, L. M. Bishop,
R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2010, 132, 12554;
9 S. Escoubet, G. Gastaldi, N. Vanthuyne, G. Gil, D. Siri and
M. P. Bertrand, J. Org. Chem., 2006, 71, 7288.
(c) S. Son and F. D. Toste, Angew. Chem., Int. Ed., 2010, 49, 3791; 10 (a) K. Qvortrup, D. A. Rankic and D. W. C. MacMillan, J. Am. Chem.
(d) A. G. Sergeev and J. F. Hartwig, Science, 2011, 332, 439; (e) T. Kleine,
J. Buendia and C. Bolm, Green Chem., 2013, 15, 160; ( f ) M. V. Galkin,
S. Sawadjoon, V. Rohde, M. Dawange and J. S. M. Samec, Chem-
Soc., 2014, 136, 626; (b) D. Hager and D. W. C. Macmillan, J. Am.
Chem. Soc., 2014, 136, 16986; (c) J. D. Cuthbertson and
D. W. C. MacMillan, Nature, 2015, 519, 74.
CatChem, 2014, 6, 179; (g) A. Rahimi, A. Ulbrich, J. J. Coon and 11 Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Com-
S. S. Stahl, Nature, 2014, 515, 249; (h) C. S. Lancefield, O. S. Ojo,
F. Tran and N. J. Westwood, Angew. Chem., Int. Ed., 2015, 54, 258.
3 For examples of visible light induced C–O bond cleavage, see:
(a) C. Dai, J. M. R. Narayanam and C. R. J. Stephenson, Nat. Chem.,
2011, 3, 140; (b) G. L. Lackner, K. W. Quasdorf and L. E. Overman, 13 I. Ghosh, L. Marzo, A. Das, R. Shaikh and B. Konig, Acc. Chem. Res.,
J. Am. Chem. Soc., 2013, 135, 15342; (c) J. Jin and D. W. C. MacMillan, 2016, 49, 1566.
Nature, 2015, 525, 87; (d) C. C. Nawrat, C. R. Jamison, Y. Slutskyy, 14 For a recent review of organic photocatalysts, see: N. A. Romero and
D. W. C. MacMillan and L. E. Overman, J. Am. Chem. Soc., 2015, D. A. Nicewicz, Chem. Rev., 2016, 106, 10075.
137, 11270; (e) E. Speckmeier, C. Padie and K. Zeitler, Org. Lett., 15 E. Speckmeier, T. G. Fischer and K. Zeitler, J. Am. Chem. Soc., 2018,
2015, 17, 4818; ( f ) E. Speckmeier and K. Zeitler, ACS Catal., 2017, 140, 15353.
pounds, CRC Press, Boca Raton, 2003.
12 (a) J. L. Jeffrey, J. A. Terrett and D. W. C. MacMillan, Science, 2015,
349, 1532; (b) I. C. Wan, M. D. Witte and A. J. Minnaard, Chem.
Commun., 2017, 53, 4926.
¨
7, 6821; (g) S.-F. Wang, X.-P. Cao and Y. Li, Angew. Chem., Int. Ed., 16 Although the reductive potential of ketone intermediate B (Ered o À1.7 V
2017, 56, 13809; (h) E. Speckmeier, T. Fischer and K. Zeitler, J. Am.
Chem. Soc., 2018, 140, 15353; (i) W. Xu, J. Ma, X.-A. Yuan, J. Dai,
J. Xie and C. Zhu, Angew. Chem., Int. Ed., 2018, 57, 10357.
vs. SCE) is more negative than that of 4CzIPNꢀÀ (E(PC/PC
À
) = À1.24 V vs.
ꢀ
SCE), control experiment shows the ketone B can still be successfully
reduced to afford the fragmentation products, see ESI†.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13144--13147 | 13147