10.1002/anie.202002014
Angewandte Chemie International Edition
COMMUNICATION
Keywords: olefin oxidation • ruthenium • donor flexibility • N-
donor ligands
[1]
[2]
J. Clayden, N. Greeves, S. G. Warren, Organic Chemistry, Oxford:
Oxford University Press, 2012.
a) J. E. Bäckvall, Modern Oxidation Methods, Wiley-VCH: Weinheim
(Germany), 2004; b) T. K. M. Shing, in Comprehensive Organic
Synthesis; Eds. B. M. Trost, I. Flemming; Pergamon Press: Oxford
(UK), 1991; Vol. 7, pp 703- 716.
[3]
[4]
a) P. S. Bailey, Chem. Rev. 1958, 58, 5, 925-1010; b) R. Criegee, Angew.
Chem. Int. Ed. Engl. 1975, 14, 745-752.
a) R. Pappo, D. S. Allen Jr., R. U. Lemieux, W. S. Johnson, J. Org. Chem.
1956, 21, 478–478; b) B. R. Travis, R. S. Narayan, B. Borhan, J. Am.
Chem. Soc. 2002, 124, 15, 3824-3825; c) D. C. Whitehead, B. R. Travis,
B. Borhan, Tetrahedron Lett. 2006, 47, 3797-3800.
[5]
[6]
a) P. H. J. Carlsen, T. Katsuki, V. S. Martin, K. B. Sharpless, J. Org.
Chem. 1981, 46, 3936-3938; b) D. Yang, C. Zhang, J. Org. Chem.
2001, 66, 4814-4818. For a remarkable system based on iron, see: A.
Gonzalez, J. Xiao, J. Am. Chem. Soc. 2015, 137, 8206−8218.
a) E. S. Gore, Platinum Met. Rev. 1983, 27, 111–125; b) S. Rup, M.
Sindt, N.Oget, Tetrahedron Lett. 2010, 51, 3123–3126; c) T. K. M. Shing,
E. K. W. Tam, V. W.-F. Tai, I. H. F. Chung, Q. Jiang Chem. Eur. J. 1996,
2, 50-57; d) B. Plietker, J. Org. Chem. 2003, 68, 7123–7125.
Figure 1. Comparison of time-conversion profiles for the olefin oxidation of
styrene using complexes 2–4 reveals the benefit of the bisPYA ligand in
complex 2 for oxidation catalysis.
[7]
[8]
P. Daw, R. Petakamsetty, A. Sarbajna, S. Laha, R. Ramapanicker, J. K.
Bera, J. Am. Chem. Soc. 2014, 136, 13987–13990.
a) M. E. Doster, S. A. Johnson, Angew. Chem. Int. Ed. 2009, 48, 2185–
2187; b) Q. Shi, R. J. Thatcher, J. Slattery, P. S. Sauri, A. C. Whitwood,
P. C. McGowan, R. E. Douthwaite, Chem. Eur. J. 2009, 15, 11346-
11360; c) P. D. W. Boyd, L. J. Wright, M. N. Zafar, Inorg. Chem. 2011,
50, 10522-10524.
ruthenium complex is predominantly catalyzing the diol formation.
Moreover, NaIO3 was identified as the product of the sacrificial
oxidant at the end of the reaction using X-ray diffraction analysis,
which suggests that NaIO4 serves as a formal 2e– oxidant that
releases one equivalent of oxygen. These observations are
consistent with a catalytic cycle involving the formation of a
bisPYA stabilized high-valent ruthenium dioxo species such as
[(bisPYA)RuIV(=O)2] for the activation and oxidation of the olefin
to produce the diol.[3c, 7] The exceptionally fast catalytic rates are
therefore attributed to a high stabilization of both, the RuIV(=O)2
intermediate through the zwitterionic resonance structure A of the
PYA ligands, as well as a high stabilization of the RuII(–OH)2
precursor via the neutral PYA resonance structure B (cf Scheme
1). This donor flexibility of the PYA units provides a rationale for a
flat energy surface of the catalytic cycle and hence efficient
turnover without catalyst deactivation.
[9]
a) K. F. Donnelly, C. Segarra, L. Shao, R. Suen, H. Müller-Bunz, M.
Albrecht, Organometallics 2015, 34, 4076–4084; b) V. Leigh, D. J.
Carleton, J. Olguin, H. Müller-Bunz, L. J. Wright, M. Albrecht Inorg.
Chem. 2014, 53, 8054-8060; c) M. Navarro, C. A. Smith, M. Albrecht,
Inorg. Chem. 2017, 56, 11688-11701.
[10] a) M. Navarro, M. Li, S. Bernhard, M. Albrecht, Chem. Eur. J. 2016, 22,
6740-6745; b) M. Navarro, C. A. Smith, M. Li, S. Bernhard, M. Albrecht,
Chem. Eur. J. 2018, 24, 6386-6398.
[11] P. Melle, Y. Manoharan, M. Albrecht, Inorg. Chem. 2018, 57, 18, 11761-
11774.
[12] B. C. Tzeng, Y. F. Chen, C. C. Wu, C. C. Hu, Y. T. Chang, C. K. Chen,
New J. Chem. 2007, 31, 202-209.
[13] A. Abbotto, S. Bradamante, G. A. Pagani, J. Org. Chem. 2001, 66, 8883-
8892.
[14] C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic
Chemistry, Fourth Edition, Wiley-VCH, Weinheim, Germany, 2011,
9783527324736.
[15] P. Hu, S. A. Snyder, J. Am. Chem. Soc. 2017, 139, 14, 5007-5010.
[16] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 2, 165-195.
[17] A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 6, 2411-2502.
In conclusion, we present a readily accessible, cheap, and
ultra-efficient ruthenium bisPYA catalyst for olefin oxidation with
exceptionally high activity and life time, reaching TOFs and TONs
in the millions. The carbonyl products are obtained with high
selectivity, even when using challenging biomass-derived
substrates. Future work will focus on elucidating the mechanistic
role of the donor-flexible bisPYA ligand in order to use even milder
oxidants, as well as the evaluation of selectivity in the oxidation of
industrially relevant heteroatom-functionalized substrates.
[18] a) P. Spannring, I. Prat, M. Costas, M. Lutz, P. C. A. Bruijnincx, B. M.
Weckhuysen, R. J. M. Klein Gebbink, Catal. Sci. Technol. 2014, 4, 708-
716; b) J.Chen, M. de Liedekerke Beaufort, L. Gyurik, J. Dorresteijn, M.
Otte, R. J. M. Klein Gebbink, Green Chem., 2019, 21, 2436-2447.
[19] The longer reaction time may be a result of the poor solubility of the
substrate in the polar phase of the reaction medium.
[20] Z.-Y. Cao, T. Ghosh, P. Melchiorre, Nat. Commun. 2018, 9, 3274.
Acknowledgements
We thank the Swiss National Science Foundation
(200020_182663) and the European Research Council (CoG
615653) for generous financial support of this work. We also thank
the crystallography service unit of the University of Bern for
analytical work (funded through SNSF R’equip 206021_128724).
5
This article is protected by copyright. All rights reserved.