1466
S. Kim et al. / Tetrahedron 65 (2009) 1461–1466
4
.3. Recycling test of 1
4. Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc.
000, 122, 7144–7145.
. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004,
26, 10657–10666.
6. Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2002, 41, 4538–4542.
2
5
After the oxidation reaction for 1-phenylethanol (61 mg,
.50 mmol) with 1 (12 mg, 0.30 mol % of Au) and Cs CO (490 mg,
2 3
1
0
7
8
9
. (a) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301–309;
1
.5 mmol, 3 equiv) in toluene (2 mL), solid containing the catalyst
was recovered by decanting the solution. For next run 1.5 equiv of
Cs CO was added.
(b) Chen, M. S.; Goodman, D. W. Science 2004, 306, 252–255.
. Abad, A.; Concepcion, P.; Corma, A.; Garcia, H. Angew. Chem., Int. Ed. 2005, 44,
4066–4069.
. Enache,D. I.;Edwards, J. K.; Landon,P.;Solsona-Espriu, B.; Carley, A.F.;Herzing, A. A.;
Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362–365.
2
3
4
.4. Reactions of benzyl alcohol with ketones
1
0. Su, F.-Z.; Liu, Y.-M.; Wang, L.-C.; Cao, Y.; He, H.-Y.; Fan, K.-N. Angew. Chem., Int.
Ed. 2008, 47, 334–337.
1. (a) Hu, J.; Chen, L.; Zhu, K.; Suchopar, A.; Richards, R. Catal. Today 2007, 122,
77–283; (b) Haider, P.; Baiker, A. J. Catal. 2007, 248, 175–187; (c) Deng, J.-P.;
1
The reaction of benzyl alcohol with acetophenone is typical.
2
2 3
Cs CO (980 mg, 3.00 mmol) and 1 (69 mg, 1.0 mol % of Au) were
Shih, W. C.; Mou, C.-Y. ChemPhysChem 2005, 6, 2021–2025; (d) Porta, F.; Prati, L.;
Rossi, M.; Coluccia, S.; Martra, G. Catal. Today 2000, 61, 165–172; (e) Biella, S.;
Prati, L.; Rossi, M. J. Catal. 2002, 206, 242–247; (f) Porta, F.; Prati, L. J. Catal. 2004,
added to a solution of acetophenone (120 mg, 1.00 mmol) and
benzyl alcohol (324 mg, 3.00 mmol) in toluene (3 mL) in a 10 mL
tube. The tube with a rubber stopper was connected with an oxy-
gen balloon through a needle, and the mixture was stirred at room
temperature for 24 h.
224, 397–403; (g) Choudhary, V. R.; Dhar, A.; Jana, P.; Jha, R.; Uphade, B. S. Green
Chem. 2005, 7, 768–770.
12. Miyamura, H.; Matsubara, R.; Miyazaki, Y.; Kobayashi, S. Angew. Chem., Int. Ed.
2007, 46, 4151–4154.
13. Pluronic P123 was essential for the preparation of 1, but more than 95% of the
employed amount was recovered from the filtration step.
14. (a) Kwon, M.-S.; Kim, N.; Park, C.-M.; Lee, J.-S.; Kang, K.-Y.; Park, J. Org. Lett.
Acknowledgements
2005, 7, 1077–1079; (b) Kim, W.-H.; Park, I.-S.; Park, J. Org. Lett. 2006, 8, 2543–
2
545; (c) Park, I.-S.; Kwon, M.-S.; Kim, N.; Lee, J.-S.; Kang, K.-Y.; Park, J. Chem.
We are grateful for the financial supports from Korea Research
Foundation (KRF-2008-314-C00203) and the Korean Ministry of
Education through the BK21 project for our graduate program.
Commun. 2005, 5667–5669; (d) Park, I.-S.; Kwon, M.-S.; Kang, K.-Y.; Lee, J.-S.;
Park, J. Adv. Synth. Catal. 2007, 349, 2039–2047; (e) Park, I.-S.; Kwon, M.-S.; Kim,
Y.; Lee, J.-S.; Park, J. Org. Lett. 2008, 10, 497–500.
1
5. Schulz-Dobrick, M.; Sarathy, K. V.; Jansen, M. J. Am. Chem. Soc. 2005, 127, 12816–
2817.
16. See, Supplementary data.
7. Without base, the oxidation was too slow to observe the production of aceto-
phenone under the standard conditions in Table 1.
1
Supplementary data
1
Characterization data for 1, and GC data and NMR spectra for the
1
8. There are many factors for the aerobic catalytic oxidation of alcohols with
heterogeneous gold nanoparticles. See the recent paper for the catalyst para-
meters of supported gold nanopaticles: Abad, A.; Corma, A.; Garc ı´ a, H.
Chem.dEur. J. 2008, 14, 22–222.
1
9. (a) Hayashi, T.; Inagaki, T.; Itayama, N.; Baba, H. Catal. Today 2006, 117, 210–213;
References and notes
(b) Marsden, C.; Taarning, E.; Hansen, D.; Johansen, L.; Klitgaard, S. K.; Egeblad,
K.; Christensen, C. H. Green Chem. 2008, 10, 168–170; (c) Su, F.-Z.; Ni, J.; Sun, H.;
Cao, Y.; He, H.-Y.; Fan, K.-N. Chem.dEur. J. 2008, 14, 7131–7134.
20. Kwon, M.-S.; Kim, N.; Seo, S.-H.; Park, I.-S.; Cheedrala, R. K.; Park, J. Angew.
Chem., Int. Ed. 2005, 44, 6913–6915.
1
. (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds;
Academic: New York, NY, 1984; (b) Hudlicky, M. Oxidation in Organic Chemistry;
American Chemical Society: Washington, DC, 1990.
2
3
. (a) Sheldon, R. A. Catal. Today 1987, 1, 351–355; (b) Menger, F. M.; Lee, C. Tet-
rahedron Lett. 1981, 22, 1655–1656; (c) Lee, D. G.; Spitzer, U. A. J. Org. Chem. 1970,
21. (a) Taguchi, K.; Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.; Ishii, Y. J. Am. Chem.
Soc. 2004, 126, 72–73; (b) Yamada, Y. M. A.; Uozumi, Y. Org. lett. 2006, 8, 1375–
1378; (c) Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki, T.; Ebitani, K.; Ka-
neda, K. J. Am. Chem. Soc. 2004, 126, 5662–5663.
3
5, 3589–3590.
. Mallet, T.; Baiker, A. Chem. Rev. 2004, 104, 3037–3058.