S.-i. Hirashima et al. / Tetrahedron 62 (2006) 7887–7891
7891
pressure, and 10% NaOH aqueous solution was added. The
aqueous solution was washed with diethyl ether, and then
acidified with 2 N HCl aqueous solution, which was ex-
tracted with diethyl ether. The organic layer was washed
with brine and dried over Na2SO4, and concentrated under
reduced pressure. The product was pure without further
purification.
J¼7.3, 1.5 Hz, 1H, C2-H), 8.08 (d, J¼8.0 Hz, 1H, C4-H),
7.91 (dd, J¼8.0, 0.7 Hz, 1H, C5-H), 7.65 (ddd, J¼8.5, 7.0,
1.5 Hz, 1H, C7-H), 7.58 (m, 2H, C3 and C6-H). MS:
m/z¼172.
4.1.12. 2-Naphthoic acid (20). 1H NMR (400 MHz,
CDCl3): d¼8.70 (s, 1H, C1-H), 8.10 (dd, J¼8.7, 1.5 Hz,
1H, C-H), 7.98 (d, J¼7.8 Hz, 1H, C-H), 7.90 (m, 2H,
C-H), 7.62 (dd, J¼7.0, 1.3 Hz, 1H, C5-H), 7.58 (dd,
J¼7.7, 1.3 Hz, 1H, C6-H), 7.55 (dd, J¼6.8, 1.2 Hz, 1H,
C7-H). MS: m/z¼172.
4.1.2. Oxidation of secondary alcohols in the presence of
cat. LiBr, bromine, or hydrobromic acid. A typical proce-
dure is as follows: in a Pyrex test tube with an O2-balloon,
a solution (5 mL) of the substrate and catalytic bromo source
in dry solvent were stirred and irradiated at room tempera-
ture with a 400-W high-pressure mercury lamp, which was
equipped with a cooling jacket, externally for the indicated
time. The reaction mixture was concentrated under reduced
pressure, and 10% NaOH aqueous solution was added. The
aqueous solution was washed with diethyl ether and the
organic layer was concentrated, and the residue was purified
by preparative tlc.
1
4.1.13. Nicotinic acid (22). H NMR (400 MHz, CD3OD):
d¼9.12 (s, 1H, C2-H), 8.73 (dd, J¼5.0, 1.5 Hz, 1H, C6-
H), 8.42 (ddd, J¼6.0, 1.9, 1.9 Hz, 1H, C4-H), 7.57 (ddd,
J¼7.2, 5.0, 0.7 Hz, 1H, C5-H). MS: m/z¼123.
4.1.14. 3-Thiophene carboxylic acid (24). 1H NMR
(400 MHz, CDCl3): d¼8.17 (dd, J¼2.9, 1.5 Hz, 1H, C2-
H), 7.50 (dd, J¼5.3, 1.5 Hz, 1H, C4-H), 7.27 (dd, J¼5.3,
2.9 Hz, 1H, C5-H). MS: m/z¼128.
1
4.1.3. Dodecanoic acid (2). H NMR (400 MHz, CDCl3):
d¼2.32 (t, J¼7.4 Hz, 2H, –CH2–COOH), 1.60 (m, 2H,
–CH2–CH2–COOH), 1.23 (m, 16H), 0.86 (t, J¼6.8 Hz,
3H, –CH3). MS: m/z¼200.
References and notes
4.1.4. 2-Dodecanone (4). 1H NMR (400 MHz, CDCl3):
d¼2.35 (t, J¼7.4 Hz, 2H, –CH2–CO–), 2.07 (s, 3H, CH3–
CO–), 1.50 (m, 2H, –CH2–CH2–CO–), 1.20 (m, 14H), 0.82
(t, J¼6.8 Hz, 3H, –CH3). MS: m/z¼184.
1. Comprehensive Organic Transformations:
A
Guide to
Functional Group Preparations; Larock, R. C., Ed.; Wiley-
VCH: New York, NY, 1999.
2. Regarding photo-oxidation with alkali metal halides, the conver-
sion of CO to CO2 and H2 to H2O in the presence of hydrogen
exposed to over 200 nm of ultraviolet light has been previously
reported, see: Ryabchuk, V. Catal. Today 2000, 58, 89.
3. Sheldon, R. A. CHEMTECH 1994, 24, 38.
1
4.1.5. 4-tert-Butylbenzoic acid (6). H NMR (400 MHz,
acetone-d6): d¼7.96 (d, J¼8.7 Hz, 2H, C2 and C6-H),
7.54 (d, J¼8.7 Hz, 2H, C3 and C5-H), 1.34 (s, 9H, t-Bu).
MS: m/z¼163.
4.1.6. 4-Chlorobenzoic acid (8). 1H NMR (400 MHz, ace-
tone-d6): d¼8.03 (d, J¼8.7 Hz, 2H, C2 and C6-H), 7.55
(d, J¼8.7 Hz, 2H, C3 and C5-H). MS: m/z¼139.
4. Itoh, A.; Hashimoto, S.; Masaki, Y. Synlett 2005, 2639.
5. For recent examples of oxidation of alcohols to the carboxylic
acids with molecular oxygen, see: (a) Figiel, P. J.; Sobczak,
J. M.; Ziolkowski, J. J. Chem. Commun. 2004, 244; (b)
Ebitani, K.; Ji, H.-B.; Mizugaki, T.; Kaneda, K. J. Mol. Catal.
A: Chem. 2004, 212, 161; (c) Baucherel, X.; Gonsalvi, L.;
Arends, I. W. C. E.; Ellwood, S.; Sheldon, R. A. Adv. Synth.
Catal. 2004, 346, 286; (d) Matsumura, Y.; Yamamoto, Y.;
Moriyama, N.; Furukubo, S.; Iwasaki, F.; Onomura, O.
Tetrahedron Lett. 2004, 45, 8221; (e) Uozumi, Y.; Nakao, R.
Angew.Chem., Int. Ed. 2003, 42, 194; (f) Ji, H.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. Tetrahedron Lett. 2002, 43, 7179; (g)
Bjorsvik, H.-R.; Liguori, L.; Merinero, J. A. V. J. Org. Chem.
2002, 67, 7493; (h) Cicco, S. R.; Latronico, M.; Mastrorilli, P.;
Suranna, G. P.; Nobile, C. F. J. Mol. Catal. A: Chem. 2001,
165, 135; (i) Jenzer, G.; Schneider, M. S.; Wandeler, R.;
Mallat, T.; Baiker, A. J. Catal. 2001, 199, 141; (j) Iwahama,
T.; Yoshino, Y.; Keitoku, T.; Sakaguchi, S.; Ishii, Y. J. Org.
Chem. 2000, 65, 6502; (k) Vocanson, F.; Guo, Y. P.; Namy,
J. L.; Kagan, H. B. Synth. Commun. 1998, 28, 2577.
1
4.1.7. Acetophenone (10). H NMR (400 MHz, CDCl3):
d¼7.94 (d, J¼7.2 Hz, 2H, C2 and C6-H), 7.54 (t,
J¼7.2 Hz, 1H, C4-H), 7.44 (t, J¼7.2 Hz, 2H, C3 and C5-
H), 2.59 (s, 3H). MS: m/z¼120.
1
4.1.8. Hexanoic acid (12). H NMR (400 MHz, CDCl3):
d¼2.35 (t, J¼7.6 Hz, 2H, –CH2–CO2H), 1.64 (quin,
J¼7.4 Hz, 2H, –CH2–CH2–CO2H), 1.36–1.29 (m, 4H),
0.90 (t, J¼7.1 Hz, 3H, –CH3); 13C NMR (100 MHz,
CDCl3): d¼180.2, 34.0, 31.2, 24.3, 22.3, 13.9.
4.1.9. 4-tert-Butylcyclohexanone (14). 1H NMR (400 MHz,
CDCl3): d¼2.42–2.26 (m, 4H), 2.17–2.05 (m, 2H), 1.53–
1.39 (m, 3H), 0.92 (s, 9H, t-Bu). MS: m/z¼154.
6. For recent examples of oxidation of alcohols with molecular
oxygen in the presence of catalytic bromine, see: Minisci, F.;
Porta, O.; Recupero, F.; Punta, C.; Gambarotti, C.; Pierini, M.;
Galimberti, L. Synlett 2004, 2203.
7. Aerobic radical oxidation of alcohols to carboxylic acids has
been reported, see: Ishii, Y.; Nakayama, K.; Takeno, M.;
Sakaguchi, S.; Iwahama, T.; Nishiyama, Y. J. Org. Chem.
1995, 60, 3934.
1
4.1.10. 4-Anisic acid (16). H NMR (400 MHz, CD3OD):
d¼7.98 (d, J¼8.7 Hz, 2H, C2 and C6-H), 7.01 (d,
J¼8.7 Hz, 2H, C3 and C5-H), 3.87 (s, 3H, –OCH3). MS:
m/z¼152.
4.1.11. 1-Naphthoic acid (18). 1H NMR (400 MHz,
CDCl3): d¼9.07 (d, J¼8.0 Hz, 1H, C8-H), 8.40 (dd,