Please do not adjust margins
ChemComm
DOI: 10.1039/C7CC05160C
COMMUNICATION
Journal Name
6
7
8
9
K. Miyamoto, Y. Sei, K. Yamaguchi, M. Ochiai, J. Am. Chem.
Soc., 2009, 131, 1382.
K. Miyamoto, Y. Sakai, S. Goda, M. Ochiai, Chem. Commun.,
2012, 48, 982.
H. Hussain, I. R. Green, I. Ahmed, Chem. Rev., 2013, 113,
3329.
Many serious accidents due to explosion/fire during the use
of percarboxylic acid have been reported. See: (a) N. A.
Milas, A. McAlevy, J. Am. Chem. Soc., 1934, 56, 1221; (b) L. S.
Silbert, E. Siegel, D. Swern, Org. Synth., 1964, 44, 81; (c) A. I.
Meyers, S. Schwartzman, G. L. Olson, H.-C. Cheung,
Tetrahedron Lett., 1976, 17, 2417; (d) R. B. King, W. M.
Douglas, A. Efraty, Org. Synth., 1977, 56, 1.
Notes and references
1
(a) G. F. Koser, Halonium Ions in The Chemistry of Functional
Groups, Supplement D, eds. S. Patai, Z. Rappoport, John
Wiley & Sons, New York, 1983, Ch. 18, p. 721; (b) A.
Varvoglis, The Organic Chemistry of Polycoordinated Iodine,
VCH Publishers, New York, 1992; (c) P. J Stang, V. V.
Zhdankin, Chem. Rev., 1996, 96, 1123; (d) M. Ochiai, In
Chemistry of Hypervalent Compounds, ed. K. Akiba, VCH
Publishers, New York, 1999; (e) Hypervalent Iodine
Chemistry, ed. T. Wirth, Topics in Current Chemistry, 224
Springer, Berlin, 2003; (f) V. V. Zhdankin, P. Stang, Chem. Rev.,
008, 108, 5299; (g) V. V. Zhdankin, Hypervalent Iodine
,
2
Chemistry, John Wiley & Sons, New York, 2014; (h) A. 10 H. Hussain, I. R. Green, I. Ahmed, Chem. Rev., 2013, 113
Yoshimura, V. V. Zhdankin, Chem. Rev., 2016, 116, 3328; (i)
3329.
Hypervalent Iodine Chemistry, ed. T. Wirth, Topic in Current 11 IBS-catalyzed oxidation does not require the aqueous media.
,
Chemistry, 373, Springer, Berlin, 2016.
M. Uyanik, T. Mutsuga, K. Ishihara, Molecules, 2012, 17,
2
3
(a) K. C. Nicolaou, V. A. Adsool, C. R. H. Hale, Org. Lett., 2010,
8604.
1
1
4
2
, 1552; (b) R. Criegee, H. Beuker, Justus Liebigs Ann. Chem., 12 Data
939, 541, 218; (c) S. Spyroudis, A. Varvoglis, Synthesis, 1975,
http://www.tcichemicals.com/en/ns/index.html.
45; (d) M. Okawara, Y. Kurusu, E. Imoto, Kogyo Kagaku 13 Several studies on iodoarene-catalyzed oxidation of alcohol
taken
from
TCI
America:
Zasshi, 1962, 65, 816; (e) S. J. Angyal, R. J. Young, J. Am.
Chem. Soc., 1959, 81, 5251; (f) K. H. Pausacker, J. Chem. Soc.,
using O have been reported. (a) R. Mu, Z. Liu, Z. Yang, Z. Liu,
2
L. Wu, Z.-L. Liu, Adv. Synth. Catal., 2005, 347, 1333; (b) C. I.
Herrerías, T. Y. Zhang, C.-J. Li, Tetrahedron, 2006, 47, 13. But,
according to the following reports by Ishihara and Iwabuchi,
those reaction mechanisms do not seem to involve a
iodine(III)-catalyzed pathway. (c) M. Uyanik, R. Fukatsu, K.
Ishihara, Chem. Asian J., 2010, 5, 456; (d) M. Shibuya, Y.
Osada, Y. Sasano, M. Tomizawa, Y. Iwabuchi, J. Am. Chem.
Soc., 2011, 133, 6497.
1
953, 107.
(a) A. S. Radhakrishna, M. E. Parham, R. M. Riggs, G. M.
Loudon, J. Org. Chem., 1979, 44, 1746; (b) G. M. Loudon, A.
S. Radhakrishna, M. R. Almond, J. K. Blodgett, R. H. Boutin, J.
Org. Chem., 1984, 49, 4272; (c) A. L. J. Beckwith, L. K. Dyall,
Aust. J. Chem., 1990, 43, 451; (d) R. M. Moriarty, C. J. Chany,
R. K. Vaid, O. Prakash, S. M. Tuladhar, J. Org. Chem., 1993, 58
,
2
2
1
1
478; (e) H. Togo, T. Nabana, K. Yamaguchi, J. Org. Chem., 14 (a) Purification of Laboratory Chemicals, eds. W. L. F.
000, 65, 8391; (f) I. M. Lazbin, G. F. Koser, J. Org. Chem.,
986, 51, 2669; (g) A. Vasudevan, G. F. Koser, J. Org. Chem.,
Armarego, C. L. L. Chai, Elsevier, Oxford, 2009; (b) J. R.
McNesby, C. A. Heller Jr., Chem. Rev., 1954, 54, 325.
988, 53, 5158; (h) A. S. Radhakrishna, C. G. Rao, R. K. Varma, 15 C. Marteau, F. Ruyffelaere, J.-M. Aubry, C. Penverne, D.
Favier, V. Nardello-Rataj, Tetrahedron, 2013, 69, 2268.
Kimishima, H. Umihara, A. Mizoguchi, S. Yokoshima, T. 16 (a) A. Baeyer, V. Villiger, Ber. Dtsch. Chem. Ges., 1899, 32
Fukuyama, Org. Lett., 2014, 16, 6244; (j) N. Satoh, T. Akiba, S.
3625. For reviews, see: (b) G. R. Krow, Org. React., 1993, 43
Yokoshima, T. Fukuyama, Angew. Chem., Int. Ed., 2007, 46
734; (k) J. W. Hilborn, Z.-H. Lu, A. R. Jurgens, Q. K. Fang, P.
Byers, S. A. Wald, C. H. Senanayake, Tetrahedron Lett., 2001,
, 8919.
B. B. Singh, S. P. Bhatnagar, Synthesis, 1983, 538; (i) A.
,
,
,
251; (c) G. Strukul, Angew. Chem., Int. Ed., 1998, 37, 1198; (d)
M. Renz, B. Meunier, Eur. J. Org. Chem., 1999, 737; (e) G.-J.
ten Brink, I. W. C. E. Arends, R. A. Sheldon, Chem. Rev., 2004,
104, 4105.
5
4
2
4
For selected examples: (a) T. Dohi, A. Maruyama, M. 17 C. Reichardt, Solvent and Solvent Effects in Organic
Yoshimura, K. Morimoto, H. Tohma, Y. Kita, Angew. Chem.,
Chemistry, Wiley, Weinheim, 1979.
Int. Ed., 2005, 44, 6193; (b) A. P. Thottumkara, M. S. Bowsher, 18 Lewis basic solvent, CH CN probably suppresses hydrogen
3
T. K. Vinod, Org. Lett., 2005,
7
, 2933; (c) Y. Yamamoto, H.
bonding, which has been suggested to be the key factor for
undesired Criegee intermediate formation. See: (a) F. Grein,
A. C. Chen, D. Edwards, C. M. Crudden, J. Org. Chem., 2006,
71, 861. For theoretical calculation for BVO of aldehyde, see:
(b) M. Ochiai, A. Yoshimura, K. Miyamoto, S. Hayashi, W.
Nakanishi, J. Am. Chem. Soc., 2010, 132, 9236.
Togo, Synlett, 2006, 798; (d) D. C. Braddock, G. Cansell, S. A.
Hermitage, Chem. Commun., 2006, 2483. Selected
asymmetric oxidations: (e) T. Dohi, A. Maruyama, N.
Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B.
Caemmerer, Y. Kita, Angew. Chem., Int. Ed., 2008, 47, 3787;
(
f) S. M. Altermann, R. D. Richardson, T. K. Page, R. K. 19 Transition metal-catalyzed C–H oxidation using in situ-
Schmidt, E. Holland, U. Mohammed, S. M. Paradine, A. N.
French, C. Richter, A. M. Bahar, B. Witulski, T. Wirth, Eur. J.
Org. Chem., 2008, 5315; (g) S. Quideau, G. Lyvinec, M.
Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau,
generated peracetic acid from inexpensive CH CHO and O2
3
was reported by Murahashi and co-workers, see: (a) S.-I.
Murahashi, T. Naota, N. Komiya, Tetrahedron Lett., 1995, 36
8059; (b) S.-I. Murahashi, X.-G. Zhou, N. Komiya, Synlett,
,
D. Cavagnat, A. Chénedé, Angew. Chem., Int. Ed., 2009, 48
4
Ed., 2010, 49, 2175; (i) D. C. Fabry, M. Stodulski, S. Hoerner, T.
Gulder, Chem. Eur. J., 2012, 18, 10834; (j) M. Shimogaki, M. 21 PhI(OAc) undergoes oxidative cleavage of 1,3-diketone, see:
,
2003, 321.
605; (h) M. Uyanik, T. Yasui, K. Ishihara, Angew. Chem., Int. 20 The absence of any peracid in the reaction mixture was
1
confirmed by both H NMR measurement and KI test.
2
Fujita, T. Sugimura, Eur. J. Org. Chem., 2013, 7128; (k) K. A.
B. Podolešov, J. Org. Chem., 1984, 49, 2644.
Volp, A. M. Harned, Chem. Commun., 2013, 49, 3001; (l) S. 22 Photo-induced oxidative cleavage of 1,3-diketones using I2
Suzuki, T. Kamo, K. Fukushi, T. Hiramatsu, E. Tokunaga, T.
Dohi, Y. Kita, N. Shibata, Chem. Sci., 2014, , 2754; (m) A.
under O , see: N. Tada, M. Shomura, L. Cui, T. Nobuta, T.
2
Miura, A. Itoh, Synlett, 2011, 2896.
5
Alhalib, S. Kamouka, W. J. Moran, Org. Lett., 2015, 17, 1453; 23 A large amount of benzoquinone was observed during the
(
5
n) I. G. Molnár, R. Gilmour, J. Am. Chem. Soc., 2016, 138
004.
,
reaction of benzamide under our previous reaction
conditions. See, reference 7. See also: A. A. Zagulyaeva, C. T.
Banek, M. S. Yusubov, V. V. Zhdankin, Org. Lett., 2010, 12,
5
M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, K. Miyamoto, J.
Am. Chem. Soc., 2005, 127, 12244.
4644.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins