J.-R. Wang et al. / Tetrahedron Letters 47 (2006) 8293–8297
8297
8. (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S.
Tetrahedron Lett. 1998, 39, 6011; (b) Nishimura, T.; Onoue,
T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750.
9. (a) Steinhoff, B. A.; Fix, S. R.; Stahl, S. S. J. Am. Chem.
Soc. 2002, 124, 766; (b) Steinhoff, B. A.; Stahl, S. S. J. Am.
Chem. Soc. 2006, 128, 4348.
10. Peterson, K. P.; Larock, R. C. J. Org. Chem. 1998, 63,
3185.
11. Schultz, M. J.; Park, C. C.; Sigman, M. S. Chem. Commun.
2002, 3034.
12. For the beneficial role of NaOAc in Pd-catalyzed aerobic
oxidations, see: Brink, J. T.; Arends, I. W. C. E.;
Papadogianakis, G.; Sheldon, R. A. Chem. Commun.
1998, 2359.
13. We found only one previous example where phosphines
ligands were used to mediate Pd-catalyzed aerobic oxida-
tive carbonylation of 1-alkynes into 2-alkynoates: Izawa,
Y.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2004,
77, 2033.
Ar–CH2NHAr, Ar–CH2NHOMe, and Ar–CH2NHMs
with high yields. Further theoretical studies showed a
remarkable difference in the free energy barrier of the
b-hydride elimination step for different amines. Thus,
in order to oxidize those ‘more difficult’ amines we need
to find more powerful solutions to reduce their energy
barriers for b-hydride elimination. Given the fact that
many phosphine ligands are available and many of them
have been known to exhibit extraordinary effects in Pd
catalysis, we are optimistic that some Pd/phosphine sys-
tem could be developed in the near future to catalyze the
aerobic oxidations of more general amines under milder
conditions.
Acknowledgment
This research was supported by the NSFC (No.
20332020 and 20472079).
14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,
Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.;
Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J.
J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain,
M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.;
Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.
M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian Inc.:
Wallingford, CT, 2004.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. (a) Boring, E.; Geletii, Y. V.; Hill, C. L. Catal. Met.
Complexes 2003, 26, 227; (b) Ji, H.-B.; Luo, S.-R.; Song,
J.; Qian, Y. Chin. J. Org. Chem. 2004, 24, 572; (c)
Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev.
2005, 105, 2329.
2. (a) Li, H.; Shu, H.; Ye, X.; Wu, Y. Prog. Chem. 2001, 13,
461; (b) Stahl, S. S. Science 2005, 309, 1824.
3. Recent reviews: (a) Muzart, J. Tetrahedron 2003, 59, 5789;
(b) Zhan, B.-Z.; Tompson, A. Tetrahedron 2004, 60, 2917;
(c) Stoltz, B. M. Chem. Lett. 2004, 33, 362; (d) Stahl, S. S.
Angew. Chem., Int. Ed. 2004, 43, 3400; (e) Sigman, M. S.;
Schultz, M. J. Org. Biomol. Chem. 2004, 2, 2551; (f) Wang,
J.-R.; Deng, W.; Wang, Y.-F.; Liu, L.; Guo, Q.-X. Chin. J.
Org. Chem. 2006, 26, 397; (g) Sigman, M. S.; Jensen, D. R.
Acc. Chem. Res. 2006, 39, 221.
15. Li, Z.; Liu, L.; Fu, Y.; Guo, Q.-X. Theochem 2005, 757,
69.
16. (a) Steinhoff, B. A.; Guzei, I. A.; Stahl, S. S. J. Am. Chem.
Soc. 2004, 126, 11268; (b) Nielsen, R. J.; Keith, J. M.;
Stoltz, B. M.; Goddard, W. A., III. J. Am. Chem. Soc.
2004, 126, 7967; (c) Mueller, J. A.; Goller, C. P.; Sigman,
M. S. J. Am. Chem. Soc. 2004, 126, 9724.
17. It was proposed recently that the rate-determining step in
the Pd(II)/Et3N system was the deprotonation step (see:
Schultz, M. J.; Adler, R. S.; Ziekiewicz, W.; Privalov, T.;
Sigman, M. S. J. Am. Chem. Soc. 2005, 127, 8499). This
possibility was ruled out in our study because even by
using much stronger bases such as t-BuOK some amines
could not be oxidized with any Pd catalyst.
4. Bailey, A. J.; James, B. R. Chem. Commun. 1996, 2343.
5. Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2003,
42, 1480.
6. Samec, J. S. M.; Ell, A. H.; Backvall, J.-E. Chem. Eur. J.
2005, 11, 2327.
7. Maeda, Y.; Nishimura, T.; Uemura, S. Bull. Chem. Soc.
Jpn. 2003, 76, 2399, and references cited therein.