ˇ
A. Podgorsek et al. / Tetrahedron 65 (2009) 4429–4439
4439
2007; (c) Lindstro¨m, U. M. Organic Reactions in Water: Principles, Strategies and
Applications; Blackwell: Oxford, 2007; (d) Hailes, H. C. Org. Process Res. Dev.
2007, 11, 114–120.
reaction products were isolated by column chromatography and
identified by comparison with literature data.
11. (a) Sheldon, R. A. Green Chem. 2005, 7, 267–278; (b) Adams, D. J.; Dyson, P. J.;
Tavener, S. J. Chemistry in Alternative Reaction Media; Wiley: New York, NY,
2004; (c) Clark, J. H.; Tavener, S. J. Org. Process Res. Dev. 2007, 11, 149–155.
4.13.1. 1,2-Dibromoethylbenzene (64)
Yield: 74 mg (28%), white crystals; mp 70–72 ꢀC (lit.53 70–72 ꢀC).
´
´
12. (a) Barluenga, J.; Marco-Arias, M.; Gonzalez-Bobes, F.; Ballesteros, A.; Gonzalez,
J. M. Chem. Commun. 2004, 2616–2617; (b) Jereb, M.; Zupan, M.; Stavber, S.
Chem. Commun. 2004, 2614–2615; (c) Pavlinac, J.; Zupan, M.; Stavber, S. Syn-
thesis 2006, 2603–2607; (d) Pavlinac, J.; Zupan, M.; Stavber, S. J. Org. Chem.
2006, 71, 1027–1032.
1H NMR (CDCl3):
d
4.06 (t, J¼10.4 Hz, 1H), 4.08 (dd, J¼10.4, 5.7 Hz,
1H), 5.14 (dd, J¼10.4, 5.7 Hz, 1H), 7.32–7.42 (m, 5H). 13C NMR
(CDCl3):
d 35.0, 50.9, 127.6, 128.8, 129.2, 138.6. MS (EI): m/z 185
(60%), 183 (60%), 104 (100%).
ˇ
13. Podgorsek, A.; Stavber, S.; Zupan, M.; Iskra, J. Green Chem. 2007, 9, 1212–1218.
ˇ
14. Podgorsek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron Lett. 2006, 47,
1097–1099.
4.13.2.
a-Bromoacetophenone (65)
ˇ
15. Podgorsek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron Lett. 2006, 47,
Yield: 10 mg (5%), crystals; mp 48.8–49.3 ꢀC (lit.13 49–51 ꢀC). 1H
7245–7247.
NMR (CDCl3):
d
4.46 (s, 2H), 7.49 (t, J¼7.4 Hz, 2H), 7.61 (tt, J¼7.4,
16. (a) Kuwabara, K.; Itoh, A. Synthesis 2006, 12, 1949–1952; (b) Srilakshimi
Krishnaveni, N.; Surendra, K.; Rama Rao, K. Adv. Synth. Catal. 2004, 346,
346–350.
17. (a) Chhattise, P. K.; Ramaswarny, A. V.; Waghmode, S. B. Tetrahedron Lett. 2008,
49, 189–194; (b) Sarma, J. A. R. P.; Nagaraju, A. J. Chem. Soc., Perkin Trans. 2 2000,
6, 1113–1118.
1.5 Hz, 1H), 7.98 (dd, J¼7.4, 1.5 Hz, 2H). 13C NMR (CDCl3):
d 30.9,
128.8, 128.9, 133.9, 133.9, 191.2. MS (EI): m/z 200 and 198 (Mþ, ratio
1:1), 105 (100%), 77 (22%), 69 (12%), 57 (19%).
Acknowledgements
18. Roche, D.; Prasad, K.; Repic, O.; Blacklock, T. J. Tetrahedron Lett. 2000, 41,
2083–2085.
19. Pravst, I.; Zupan, M.; Stavber, S. Tetrahedron Lett. 2006, 47, 4707–4710.
20. (a) Lenoir, D.; Chiappe, C. Chem.dEur. J. 2003, 9, 1037–1044; (b) Conte, V.; Di
Furia, F.; Moro, S.; Rabbolini, S. J. Mol. Catal. A 1996, 113, 175–184; (c) Rothen-
berg, G.; Clark, J. H. Green Chem. 2000, 2, 248–251; (d) Andersson, M.; Conte, V.;
Di Furia, F.; Moro, S. Tetrahedron Lett. 1995, 36, 2675–2678.
21. Campbell, J. J.; Glover, S. A.; Hammond, G. P.; Rowbottom, C. A. J. Chem. Soc.,
Perkin Trans. 2 1991, 2067–2079.
22. Han, G. Y.; Han, P. F.; Perkins, J.; Mcbay, H. C. J. Org. Chem. 1981, 46, 4695–4700.
23. Mallory, F. B.; Butler, K. E.; Berube, A.; Luzik, E. D.; Mallory, C. W.; Brondyke,
E. J.; Hiremath, R.; Ngo, P.; Carroll, P. J. Tetrahedron 2001, 57, 3715–3724.
24. Konya, K. G.; Paul, T.; Lin, S.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 2000, 122,
7518–7527.
This research has been supported by the Ministry of Higher
Education, Science and Technology and the Young Researcher
Program (A.P.) of the Republic of Slovenia. The authors are grateful
to the staff of the National NMR Centre at the National Institute of
Chemistry in Ljubljana and the staff of the Mass Spectroscopy
Centre at the JSI.
References and notes
1. (a) Ullmann’sEncyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2002;
(b) The Chemistry of Functional Groups: Supplement D2. The Chemistry of Ha-
lides, Pseudo-Halides and Azides, Part 1 & 2; Wiley: Chichester, 1995.
2. (a) De la Mare, P. B. D.; Bolton, R. Electrophilic Additions to Unsaturated Systems;
Elsevier: Amsterdam, 1982; (b) Smith, M. B.; March, J. Aromatic Electrophilic
Substitution. In March’s Advanced Organic Chemistry, 5th ed; John Wiley & Sons:
New York, NY, 2001; pp 704–707.
3. (a) Carren˜o, M. C.; Ruano, J. L. G.; Sanz, G.; Toledo, M. A.; Urbano, A. J. Org. Chem.
1995, 60, 5328–5331; (b) Oberhauser, T. J. Org. Chem. 1997, 62, 4504–4506; (c)
Rajagopal, R.; Jarikote, D. V.; Lahoti, R. J.; Daniel, T.; Srinivasan, K. V. Tetrahedron
Lett. 2003, 44, 1815–1817; (d) Sarma, J. A. R. P.; Nagaraju, A. J. Chem. Soc., Perkin
Trans. 2 2000, 6, 1113–1118; (e) Pravst, I.; Zupan, M.; Stavber, S. Green Chem.
2006, 1001–1005; (f) Heropoulos, G. A.; Cravotto, G.; Screttas, C. G.; Steele, B. R.
Tetrahedron Lett. 2007, 48, 3247–3250; (g) Pravst, I.; Zupan, M.; Stavber, S.
Tetrahedron 2008, 64, 5191–5199.
25. Augustine, J. K.; Naik, Y. A.; Mandal, A. B.; Chowdappa, N.; Praveen, V. B. Tet-
rahedron 2008, 64, 688–695.
26. Ganapathy, S.; Sekhar, B. B. V. S.; Cairns, S. M.; Akutagawa, K.; Bentrude, W. G.
J. Am. Chem. Soc. 1999, 121, 2085–2096.
27. Smith, H. A.; Stanfield, J. A. J. Am. Chem. Soc. 1949, 71, 81–83.
28. Venkatachalapathy, C.; Pitchumani, K. Tetrahedron 1997, 53, 2581–2584.
29. Smyth, C. P.; Walls, W. S. J. Am. Chem. Soc. 1932, 54, 1854–1862.
30. Gassman, P. G.; Macomber, D. W.; Willging, S. M. J. Am. Chem. Soc. 1985, 107,
2380–2388.
31. Tanner, D. D.; Plambeck, J. A.; Reed, D. W.; Mojelsky, T. W. J. Org. Chem. 1980, 45,
5177–5183.
32. Haberfield, P.; Nudelman, A.; Bloom, A.; Romm, R.; Ginsberg, H. J. Org. Chem.
1971, 36, 1792–1795.
33. Futamura, S.; Zong, Z. M. Bull. Chem. Soc. Jpn. 1992, 65, 345–348.
34. Smith, L. I.; Moyle, C. L. J. Am. Chem. Soc. 1933, 55, 1676–1681.
35. Oestreich, M.; Schmid, U. K.; Auer, G.; Keller, M. Synthesis 2003, 2725–2739.
36. Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 8153–
8156.
4. (a) Chiappe, C.; Leandri, E.; Pieraccini, D. Chem. Commun. 2004, 2536–2537; (b)
Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005, 70, 6556; (c) Salazar, J.; Dorta,
R. Synlett 2004, 1318–1320.
5. Eissen, M.; Lenoir, D. Chem.dEur. J. 2008, 14, 9830–9841.
37. McCauley, K. M.; Vrtis, J. M.; Dupont, J.; van der Donk, W. A. J. Am. Chem. Soc.
2000, 122, 2403–2404.
38. Raju, T.; Kulangiappar, K.; Kulandainathan, M. A.; Uma, U.; Malini, R.; Muthu-
kumaran, A. Tetrahedron Lett. 2006, 47, 4581–4584.
6. (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford
University Press: Oxford, 1998; (b) Jones, W. J. Applications of Hydrogen Peroxide
and Derivatives; Royal Society of Chemistry: Cambridge, 1999.
7. (a) Bora, U.; Chaudhuri, M. K.; Dey, D.; Dhar, S. S. Pure Appl. Chem. 2001, 73, 93–
102; (b) Conte, V.; Di Furia, F.; Moro, S. Tetrahedron Lett. 1996, 37, 8609–8612; (c)
Das, D. P.; Parida, K. M. Appl. Catal., A 2006, 305, 32–38; (d) Espenson, J. H.; Zhu,
Z. L.; Zauche, T. H. J. Org. Chem. 1999, 64, 1191–1196; (e) Mallick, S.; Parida, K. M.
Catal. Commun. 2007, 8, 889–893; (f) Moriuchi, T.; Yamaguchi, M.; Kikushima,
K.; Hirao, T. Tetrahedron Lett. 2007, 48, 2667–2670; (g) Narender, N.; Mohan, K.
V. V. K.; Reddy, R. V.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. J. Mol. Catal. A
2003, 192, 73–77; (h) Reis, P. M.; Silva, J. A. L.; da Silva, J. J. R. F.; Pombeiro, A. J. L.
Chem. Commun. 2000, 1845–1846; (i) Rothenberg, G.; Clark, J. H. Org. Process
Res. Dev. 2000, 4, 270–274; (j) Sels, B.; De Vos, D.; Buntinx, M.; Pierard, F.;
Kirsch-De Mesmaeker, A.; Jacobs, P. Nature 1999, 400, 855–857.
8. (a) Barhate, N. B.; Gajare, A. S.; Wakharkar, R. D.; Bedekar, A. V. Tetrahedron
1999, 55, 11127–11142; (b) Ganchegui, B.; Leitner, W. Green Chem. 2007, 9, 26–
29; (c) Mukhopadhyay, S.; Ananthakrishnan, S.; Chandalia, S. B. Org. Process Res.
Dev. 1999, 3, 451–454; (d) Vyas, P. V.; Bhatt, A. K.; Ramachandraiah, G.; Bedekar,
A. V. Tetrahedron Lett. 2003, 44, 4085–4088.
39. Scott, J. M. W. Can. J. Chem. 1960, 38, 2441–2449.
40. Heinicke, J.; Gupta, N.; Surana, A.; Peulecke, N.; Witt, B.; Steinhauser, K.; Bansal,
R. K.; Jones, P. G. Tetrahedron 2001, 57, 9963–9972.
41. Yamazaki, K.; Nakamura, Y.; Konodo, Y. J. Org. Chem. 2003, 68, 6011–6019.
42. Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Tetrahedron
2003, 59, 1571–1587.
43. Kitching, W.; Bullpitt, M.; Gartshore, D. J. Org. Chem. 1977, 42, 2411–2418.
44. Michel, F.; Thomas, F.; Hamman, S.; Saint-Aman, E.; Bucher, C.; Pierre, J. L.
Chem.dEur. J. 2004, 10, 4115–4125.
45. Lewis. J. Chem. Soc. 1903, 83, 330–331.
46. Zhang, H. C.; Tse, M. K.; Chan, K. S. Synth. Commun. 2001, 31, 1129–1139.
47. Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2003,
125, 11911–11924.
48. Tidwell, J. H.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11797–11810.
49. Datta, R. L.; Bhoumik, J. C. J. Am. Chem. Soc. 1921, 43, 303–315.
50. Marvel, C. S.; Hinman, C. W. J. Am. Chem. Soc. 1954, 76, 5435–5437.
51. Specht, H.; Onken, D.; Adam, G. Z. Chem. 1970, 10, 70–71.
52. Ye, C. F.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561–8563.
9. Van Pee, K. H.; Unversucht, S. Chemosphere 2003, 52, 299–312.
10. (a) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2005, 44, 3275–3279; (b) Li, C. J.; Chan, T. H. Compre-
hensive Organic Reactions in Aqueous Media, 2nd ed.; Wiley: New Jersey, NJ,
ˇ
53. Podgorsek, A.; Eissen, M.; Fleckenstein, J.; Stavber, S.; Zupan, M.; Iskra, J. Green
Chem. 2009, 11, 120–126.