Catalysis Science & Technology
Communication
previous reports.21,22 This can be possibly attributed to the for-
mation of a hydride phase which is active in over-hydrogenation
reactions.23 The employment of a second element is the main
strategy to improve performance of Pd catalysts (e.g., Pd–Ga,24
Pd–Cu,25 Pd–Ni12 and Pd–Si26). The presence of other metals
or metalloids would modify the geometric effect and electron
density of Pd atom, influencing the adsorption behavior of
reactants and intermediates.27
In this work, Rh and P elements in the PdRhP amorphous
alloy may function in a similar way (e.g., the geometric and
electronic modification effect of Rh and P elements12,24,28) to
improve the hydrogenation selectivity for alkynes. On the
other hand, the inherent nature of the amorphous alloy may
also have a unique influence on the enhanced selectivity.
From a theoretical point of view, the metalloid element in an
amorphous alloy could change the coordination environment
of an active metal (e.g., in the NiB system29), and the short-
range order between neighboring metal atoms would influ-
ence the adsorption of reactants.30 Therefore, the improved
catalytic performance of PdRhP can be attributed to the
intrinsic nature of the amorphous alloy with a modified
geometric/electronic structure, which will be studied in our
future work.
5 Y. Chen, B. Liaw and S. Chiang, Appl. Catal., A, 2005, 284,
97–104.
6 (a) M. Shapaan, A. Bárdos, L. K. Varga and J. Lendvai, Mater.
Sci. Eng., A, 2004, 366, 6–9; (b) H. E. Schone, H. C. Hoke and
A. Johnson, Mater. Sci. Eng., 1988, 97, 431–435; (c) Y. Ma,
W. Li, M. Zhang, Y. Zhou and K. Tao, Appl. Catal., A,
2003, 243, 215–223; (d) H. Li, D. Chu, J. Liu, M. Qiao, W. Dai
and H. Li, Adv. Synth. Catal., 2008, 350, 829–836.
7 Y. Ma, W. Li, M. Zhang, Y. Zhou and K. Tao, Appl. Catal., A,
2003, 243, 215–223.
8 L. Song, W. Li, G. Wang, M. Zhang and K. Tao, Catal. Today,
2007, 125, 137–142.
9 H. Yamashita, M. Yoshikawa, T. Funabiki and S. Yoshida,
J. Chem. Soc., Faraday Trans. 1, 1986, 82, 1771–1780.
10 H. Zhang, M. Jin, H. Liu, J. Wang, M. J. Kim, D. Yang, Z. Xie,
J. Liu and Y. Xia, ACS Nano, 2011, 5, 8212–8222.
11 X. Huang, Y. Li, Y. Li, H. Zhou, X. Duan and Y. Huang, Nano
Lett., 2012, 12, 4265–4270.
12 S. Domínguez-Domínguez, Á. Berenguer-Murcia, D. Cazorla-Amorós
and Á. Linares-Solano, J. Catal., 2006, 243, 74–81.
13 F. M. McKenna, L. Mantarosie, R. P. K. Wells, C. Hardacre
and J. A. Anderson, Catal. Sci. Technol., 2012, 2, 632–638.
14 T. A. Nijhuis, G. van Koten and J. A. Moulijn, Appl. Catal., A,
2003, 238, 259–271.
15 P. W. Albers, K. MÖbus, C. D. Frost and S. F. Parker, J. Phys.
Chem. C, 2011, 115, 24485–24493.
16 F. M. McKenna, R. P. K. Wells and J. A. Anderson, Chem.
Commun., 2011, 47, 2351–2353.
In summary, this work provides a facile method for the
preparation of ternary PdRhP amorphous alloy NPs with a
uniform particle size. The combination of Pd and Rh with
the presence of P shows excellent catalytic performance in
hydrogenation of several alkynes under mild reaction condi-
tions compared with the pristine Rh or Pd catalyst. This
approach can be extended to other amorphous bimetallic
alloys with superior catalytic behavior and potential applica-
tions in industrial hydrogenation reactions.
17 L. D. Pachón and G. Rothenberg, Appl. Organomet. Chem.,
2008, 22, 288–299.
18 J. S. Chen, A. N. Vasiliev, A. P. Panarello and J. G. Khinast,
Appl. Catal., A, 2007, 325, 76–86.
19 S. S. Soomro, F. L. Ansari, K. Chatziapostolou and K. Köhler,
J. Catal., 2010, 273, 138–146.
Acknowledgements
20 (a) M. Comotti, W. C. Li, B. Spliethoff and F. Schüth, J. Am.
Chem. Soc., 2006, 128, 917–924; (b) L. N. Protasova,
E. V. Rebrov, K. L. Choy, S. Y. Pung, V. Engels, M. Cabaj,
A. E. H. Wheatley and J. C. Schouten, Catal. Sci. Technol.,
2011, 1, 768–777; (c) N. Lopez, J. K. Nørskov,
T. V. W. Janssens, A. Carlsson, A. Puig-Molina, B. S. Clausen
and J.-D. Grunwaldt, J. Catal., 2004, 225, 86–94; (d)
S. Domínguez-Domínguez, Á. Berenguer-Murcia, Á. Linares-Solano
and D. Cazorla-Amorós, J. Catal., 2008, 257, 87–95.
21 C. A. Hamilton, S. D. Jacksona, G. J. Kelly, R. Spence and
D. Bruin, Appl. Catal., A, 2002, 237, 201–209.
This work was supported by the 973 Program (grant no.
2011CBA00504), the National Natural Science Foundation of
China (NSFC), the Scientific Fund from Beijing Municipal
Commission of Education (20111001002) and the Funda-
mental Research Funds for the Central Universities (ZD 1303).
M. Wei particularly appreciates the financial aid from the
China National Funds for Distinguished Young Scientists of
the NSFC.
22 J. Osswald, R. Giedigkeit, R. E. Jentoft, M. Armbrüster,
F. Girgsdies, K. Kovnir, T. Ressler, Y. Grin and R. Schlögl,
J. Catal., 2008, 258, 210–218.
Notes and references
1 P. Rodriguez, F. D. Tichelaar, M. T. M. Koper and A. I. Yanson,
J. Am. Chem. Soc., 2011, 133, 17626–17629.
2 S. Zafeiratos, S. Piccinin and D. Teschner, Catal. Sci. Technol.,
2012, 2, 1787–1801.
3 E. C. Corbos, P. R. Ellis, J. Cookson, V. Briois, T. I. Hyde,
G. Sankar and P. T. Bishop, Catal. Sci. Technol., 2013, 3,
2934–2943.
4 Z. Jiang, H. Yang, Z. Wei, Z. Xie, W. Zhong and S. Wei, Appl.
Catal., A, 2005, 279, 165–171.
23 (a) D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker,
A. Knop-Gericke, S. D. Jackson and R. Schlögl, Science,
2008, 320, 86–89; (b) N. López and C. Vargas-Fuentes, Chem.
Commun., 2012, 48, 1379–1391; (c) M. García-Mota, B. Bridier,
J. Pérez-Ramírez and N. López, J. Catal., 2010, 273, 92–102.
24 G. Wowsnick, D. Teschner, M. Armbrüster, I. Kasatkin,
F. Girgsdies, Y. Grin, R. Schlögl and M. Behrens, J. Catal.,
2014, 309, 221–230.
This journal is © The Royal Society of Chemistry 2014
Catal. Sci. Technol., 2014, 4, 1920–1924 | 1923