Sreedevi Mannam et al.
COMMUNICATIONS
residue was purified by silica gel column chromatography
Obora, Y. Tsuji, J. Am. Chem. Soc. 2004, 126, 6554–
6555; e) E. M. Ferrieira, B. M. Stoltz, J. Am. Chem.
Soc. 2001, 123, 7725–7726; f) D. R. Jensen, J. S. Pugs-
ley, M. S. Sigman, J. Am. Chem. Soc. 2001, 123, 7475–
7476; g) S. Stahl, Science 2005, 309, 1824–1826.
(
(
hexane-ethyl acetate) to give the aldehyde; yield: 121 mg
89%).
Synthesis of the DABCO-Cu Complex
[
[
8] a) H. Egami, S. Onitsuka, T. Katsuki, Tetrahedron Lett.
To a solution of CuCl (9.9 mg, 0.1 mmol) in acetonitrile
2
005, 46, 6049–6052; b) H. Shimizu, S. Onitsuka, H.
Egami, T. Katsuki, J. Am. Chem. Soc. 2005, 127, 5396–
413; c) K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebita-
ni, K. Kaneda, J. Am. Chem. Soc. 2000, 122, 7144–
145.
(
10 mL), DABCO (11.3 mg, 0.1 mmol in 10 mL acetonitrile)
was added. The resultingsolution was sli gh tly warmed to
give clear solution. The reaction mixture was filtered
through Whatman filter paper. The filtrate was kept at
room temperature for slow evaporation which gave slightly
green-colored needle-like crystals whose solid state structure
determination shows that the copper is in the Cu(II) oxida-
tion state with the molecular formula [(DAB-
CO) CuCl ·HCl].
5
7
9] J. Martin, C. Martin, M. Faraj, M. J. Bregeault, Nouv.
Chim. 1984, 8, 141.
10] S. Velusamy, M. Ahamed, T. Punniyamurthy, Org. Lett.
[
[
[
2
004, 6, 4821–4824.
2
2
11] Y. Wang, J. L. DuBois, B. Hedman, K. O. Hodgson,
Crystallographic data: C H Cl CuN , M=395.25, rhom-
1
2
25
3
4
T. D. P. Stack, Science 1998, 279, 537–540.
bohedron, a=10.6777(2) , a=908, b=10.6777(2) , b=
12] a) S. Velusamy, A. Srinivasan, T. Punniyamurthy, Tetra-
hedron Lett. 2006, 47, 923–926; b) N. Jiang, A. J. Ra-
gauskas, J. Org. Chem. 2006, 71, 7087–7090; c) A. K.
Nairn, S. J. Archibald, R. Bhalla, B. C Gilbert, E. J Ma-
cLean, S. J. Teat, P. H. Walton, Dalton Trans. 2006,
3
9
2
08, c=12.0487(2) , g=1208, V=1189.67(4) , T=
93(2) K, space group R32, Z=3, m=1.878 cm, Rint =0.0215
(
for 3006 measured reflections), R1=0.0208 [for 1032
unique reflections with I>2s(I)], wR2=0.0470; CCDC No:
33455.
6
1
72–176; d) N. Jiang, A. Ragauskas, Org. Lett. 2005, 7,
3
689–3692; e) I. E. Marko, A. Gautier, R. Dumeunier,
K. Doda, F. Philippart, S. M. Brown, C. J. Urch, Angew.
Chem. Int. Ed. 2004, 43, 1588–1591; f) P. Gamez,
I. W. C. E. Arends, R. A. Sheldon, J. Reedijk, Adv.
Synth. Catal. 2004, 346, 805–811; g) G. Ragagnin, B.
Betzemeier, S. Quici, P. Knochel, Tetrahedron 2002, 58,
3985–3991; h) R. Gree, I. A. Ansari, Org. Lett. 2002, 4,
Acknowledgements
We thank DST, New Delhi (SERC Fast Track Research Proj-
ect No.: SR/FTP/CS-19/2004) for the financial support. S. M.
and S. K. A. thank CSIR for Junior Research Fellowship.
1
507–1509; i) P. P. Chaudhuri, M. Hess, J. Muller, K.
Hidenbrand, E. Bill, T. Weyhermuller, K. Wieghardt, J.
Am. Chem. Soc. 1999, 121, 9599–9610.
13] There are only very few reports for Cu complex-cata-
References
[
[
lyzed oxidations of alcohols at room temperature. In
[
1] a) R. A. Sheldon, J. K. Kochi, Metal-Catalysed Oxida-
tions of Organic Compounds, Academic Press, New
York, 1981; b) A. E. J. de Nooy, A. C. Basemer, H. van
Bekkum, Synthesis 1996, 1153–1174; c) T. Mallat, A.
Baiker, Chem. Rev. 2004, 104, 3037–3058.
[
12d]
these reports, they have used ionic liquid,
an exter-
.
[12f]
[12b]
nal base such as t-BuOK
or DABCO
is used.
14] Since the lone pair electrons of both the nitrogens in
DABCO are 1808 away from each other, it gives binu-
clear or polynuclear complex. For a similar kind of Cu-
DABCO complex structure, see: J. K. Clegg, J. K. Gloe,
M. J. Hayter, O. Kataeva, L. F. Lindoy, B. Moubaraki,
C. J. McMurtrie, K. S. Murray, D. Schilter, Dalton
Trans. 2006, 3977–3984.
[
[
2] R. A. Sheldon, I. W. C. E. Arends, A. Dijksman, Catal.
Today 2000, 57, 157.
3] J. March, Advance Organic Chemistry; Reaction, Mech-
th
anisms and Structure, 4 edn., John Wiley & Sons, New
York, 1992.
[
[
[
4] I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown,
[15] Formation of the copper alkoxide with an alcohol will
be easier for Cu(II) than for Cu(I) as Cu(II) is a stron-
ger Lewis acid. Similarly, if Cu(I) is the catalyst, it will
be reduced to Cu(0) duringthe course of the catalytic
cycle and reoxidized to Cu(I) which is not facile under
the reaction conditions. If Cu(II) is the catalyst, it will
be reduced to Cu(I) duringthe reaction and Cu(I) will
be easily oxidized back to Cu(II) under the reaction
conditions. So we assumed that, in this reaction, Cu(I)
C. J. Urch, Science 1996, 274, 2044–2046.
5] T. Iwahama, Y. Yoshino, T. Keitoku, S. Sakaguchi, Y.
Ishii, J. Org. Chem. 2000, 65, 6502–6507.
6] a) Y. Maeda, N. Kakiuchi, S. Matsumura, T. Nishimura,
T. Kawamura, S. Uemura, J. Org. Chem. 2002, 67,
6
718–6724; b) S. R. Reddy, S. Das, T. Punniyamurthy,
Tetrahedron Lett. 2004, 45, 3561–3564.
[
7] a) T. Nishimura, T. Onoue, K. Ohe, S. Uemura, J. Org.
Chem. 1999, 64, 6750–6755; b) K. P. Peterson, R. C.
Larock, J. Org. Chem. 1998, 63, 3185–3189; c) G. J.
TenBrink, I. W. C. E. Arends, R. A. Sheldon, Science
is getting oxidized to Cu(II) in the presence of O
duringthe initial sta ge . This phenomenon is also sup-
2
ported by the X-ray crystal structure of the DABCO-
Cu complex.
2
000, 287, 1636–1639; d) T. Iwasawa, M. Tokunaga, Y.
2258
ꢀ 2007 Wiley-VCH VerlagGmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2007, 349, 2253 – 2258