330 ◦C while at 380 ◦C it does not. This also explains the shape
of the curves in Fig. 6.
12 Y.-L. Kim, J.-D. Kim, J. S. Lim, Y.-W. Lee and S.-C. Yi, Ind. Eng.
Chem. Res., 2002, 41, 5576–5583.
13 M. Osada and P. E. Savage, AIChE J., 2009, 55, 710–716.
14 J. B. Dunn and P. E. Savage, Green Chem., 2003, 5, 649–655.
15 W. Partenheimer and M. Poliakoff in Handbook of Green Chemistry
– Green Catalysis: Homogeneous Catalysis, ed. P. T. Anastas and R.
H. Crabtree, Wiley-VCH, Weinhein, 2009, vol 1, ch. 12, pp. 375–
397.
Summary and Conclusions
A detailed study of the catalytic effect of different substances
on the oxidation of pX to TA as catalyst has been carried out.
CuBr2 itself, or combined with other metallic bromides, has
been shown to be the best in terms of TA selectivity, of TA
yield and of burn. Low concentrations of copper are enough
to give good performances provided that the overall amount of
bromide is high enough. Br can be added in several different
ways (as metallic bromide, HBr or NH4Br), all giving high TA
yields and selectivities.
The role of the different species in the reaction mechanism
has been discussed: Cu is the most active redox catalyst, Mn
and Fe are weaker redox catalysts. Many metallic bromides can
activate CuBr2 acting as redox metals, Lewis acids or sources
of HBr by hydrolysis. There is a strong synergy between Cu
and Co and probably the best composition identified so far is
Cu/Co/NH4/Br because the concentrations of both metals are
minimized, the TA yield is high and the burn is low.
16 H. Weinga¨rtner and E. U. Franck, Angew. Chem., Int. Ed., 2005, 44,
2672–2692.
17 A. Kruse and E. Dinjus, J. Supercrit. Fluids, 2007, 39, 362–380.
18 J. Fraga-Dubreuil and M. Poliakoff, Pure Appl. Chem., 2006, 78,
1971–1982.
19 P. E. Savage, Chem. Rev., 1999, 99, 603–621.
20 D. Bro¨ll, C. Kaul, A. Kra¨mer, P. Krammer, T. Richter, M. Jung, H.
Vogel and P. Zehner, Angew. Chem., Int. Ed., 1999, 38, 2998–3014.
21 M. D. Bermejo and M. J. Cocero, AIChE J., 2006, 52, 3933–3951.
22 E. Pe´rez, J. Fraga-Dubreuil, L. Dudd, E. Garcia-Verdugo, P. A. Ham-
ley, M. L. Thomas, C. Yan, W. B. Thomas, D. Housley, W. Parten-
heimer and M. Poliakoff, Selective aerobic oxidation of para-xylene
in sub- and supercritical water. Part 1. Comparison with ortho-xylene
and role of the catalyst, Green Chem., DOI: 10.1039/c1gc15137a.
23 W. Partenheimer, Catal. Today, 1995, 23, 69–158.
24 W. Partenheimer, J. Mol. Catal., 1991, 67, 35–46.
25 A. Saffer and R. S. Barker, Chem Eng. Prog., 1968, 64, 20.
26 US Patent 4 786 753, 1988.
27 R. K. Gipe and W. Partenheimer, Stud. Surf. Sci. Catal., 1997, 110,
1117–1127.
Overall, this paper has described the discovery of new and
substantially different catalysts for the aerobic oxidation of pX
to TA in high temperature and supercritical water. Given this
new direction, there is almost certainly opportunity for further
improvement and optimization of this fascinating reaction.
28 W. Partenheimer in Catalysis of Organic Reactions, ed. F. E. Herkes,
Marcel Dekker Inc., New York, NY, 1998.
29 H. D. Holtz, J. Org. Chem., 1972, 37, 2069–2074.
30 H. D. Holtz, Chem Commun., 1971, 19, 1166.
31 F. Recupero and C. Punta, Chem. Rev., 2007, 107, 3800–3842.
32 N. V. Sidwick, The chemical elements and their compounds, Oxford-
Clarendon Press, 1950, vol 1.
33 US patent 5 112 992, 1954.
34 US patent, 2 673 217, 1957.
Acknowledgements
35 W. Partenheimer and R. K. Gipe in Catalytic Selective Oxidation, ed
S. T. Oyama and J. W. Hightower, American Chemical Society, 1993,
pp. 81–88.
We thank EPRSC, the University of Nottingham and INVISTA
for financial support. We thank Graham Aird, Stuart Coote, Lu-
cinda Dudd, Annette Matthews, Ian Pearson, Tony Richardson,
John Runnacles, Peter Fields, Richard Wilson and Mark Guyler
for their help.
36 US Patent 5 183 933, 1993.
37 V. N. Aleksandrov, Kinet. Katal., 1978, 19, 1057–1060.
38 J. B. Dunn, M. L. burns, S. E. Hunter and P. E. Savage, J. Supercrit.
Fluids, 2003, 27, 263–274.
39 W. Partenheimer, J. Mol. Catal. A: Chem., 2003, 206, 105–119.
40 W. Partenheimer, J. Mol. Catal. A: Chem., 2003, 206, 131–144.
41 E. J. Y. Scott, J. Phys. Chem., 1970, 74, 1174–1182.
42 Y. Chen, J. L. Fulton and W. Partenheimer, J. Am. Chem. Soc., 2005,
127, 14085–14093.
References
1 P. A. Hamley, T. Ilkenhans, J. M. Webster, E. Garc´ıa-Verdugo, E.
Vernardou, M. J. Clarke, R. Auerbach, W. B. Thomas, K. Whiston
and M. Poliakoff, Green Chem., 2002, 4, 235–238.
2 J. Fraga-Dubreuil, E. Garc´ıa-Verdugo, P. A. Hamley, E. M. Vaquero,
L. M. Dudd, I. Pearson, D. Housley, W. Partenheimer, W. B. Thomas,
K. Whiston and M. Poliakoff, Green Chem., 2007, 9, 1238–1245.
3 E. Garc´ıa-Verdugo, E. Vernardou, W. B. Thomas, K. Whiston, W.
Partenheimer, P. A. Hamley and M. Poliakoff, Adv. Synth. Catal.,
2004, 346, 307–316.
43 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solu-
tions, Pergamon Press, 1966.
44 B. Beverskog and I. Puigdomenech, J. Electrochem. Soc., 1997, 144,
3476–3486.
45 B. Beverskog and I. Puigdomenech, Corros. Sci., 1996, 38, 2121–
2135.
46 B. Beverskog and I. Puigdomenech, Corros. Sci., 1997, 39, 969–
980.
47 B. Beverskog and I. Puigdomenech, Corros. Sci., 1997, 39, 107–114.
48 J. L. Fulton, M. M. Hoffman, J. G. Darab and B. J. Palmer, J. Phys.
Chem. A, 2000, 104, 11651–11663.
4 E. Garcia-Verdugo, J. Fraga-Dubreuil, P. A. Hamley, W. B. Thomas,
K. Whiston and M. Poliakoff, Green Chem., 2005, 7, 294–300.
5 J. Fraga-Dubreuil, E. Garc´ıa-Verdugo, P. A. Hamley, E. Pe´rez,
I. Pearson, W. B. Thomas, D. Housley, W. Partenheimer and M.
Poliakoff, Adv. Synth. Catal., 2009, 351, 1866–1876.
6 R. L. Holliday, B. Y. M. Jong and J. W. Kolis, J. Supercrit. Fluids,
1998, 12, 255–260.
49 Y. Kamiya, T. Nakajima and K. Sakoda, Bull. Chem. Soc. Jpn., 1966,
39, 2211–2215.
50 K. P. Jonhston and J. B. Chlistunoff, J. Supercrit. Fluids, 1998, 12,
155–164.
51 W. Partenheimer, in Catalytic Selective Oxidation, ed. S. T. Oyama
and J. W. Hightower, American Chemical Society, 1993, ch. 7.
52 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor.
Gen. Crystallogr., 1976, 32, 751–767.
7 P. E. Savage, J. B. Dunn and J. Yu, Combust. Sci. Technol., 2006, 178,
443–365.
8 J. B. Dunn and P. E. Savage, Environ. Sci. Technol., 2005, 39, 5427–
5436.
53 T. Adschiri, Y. Hakuta, K. Sue and K. Arai, J. Nanopart. Res., 2001,
3, 227–235.
9 J. B. Dunn and P. E. Savage, Ind. Eng. Chem. Res., 2002, 41, 4460–
4465.
54 K. Byrappa, T. Adschiri and Progr, Prog. Cryst. Growth Charact.
Mater., 2007, 53, 117–166.
55 E. Lester, P. Blood, J. Denyer, D. Giddings, B. Azzopardi and M.
Poliakoff, J. Supercrit. Fluids, 2006, 37, 209–214.
10 J. B. Dunn, D. I. Urquhart and P. E. Savage, Adv. Synth. Catal., 2002,
344, 385–394.
11 Y.-L. Kim, S. J. Chung, J.-D. Kim, J. S. Lim, Y.-W. Lee and S.-C. Yi,
React. Kinet. Catal. Lett., 2002, 77, 35–43.
This journal is
The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 2397–2407 | 2407
©