1148
P. Tongkate et al. / Tetrahedron Letters 49 (2008) 1146–1148
In the absence of brominating agent, 2-phenylethyl chlo-
ride was obtained in high yield (entry 1). Br CCO Et dis-
tive program (KO 47/2547) and the Graduate school,
Chulalongkorn University.
3
2
played reactivity close to those of CBr and Br CCONEt
2
4
3
(
entries 2 and 3). Intriguingly, Br CCOCBr , bearing a
References and notes
3
3
strong electron-withdrawing group, significantly displayed
the highest reactivity (entry 5). The highest reactivity was
associated with the strongest electron-withdrawing groups,
1
. (a) Gawande, M. B.; Deshpande, S. S.; Satam, J. R.; Jayaram, R. V.
Catal. Commun. 2007, 8, 576–582; (b) Gonzalez-Bobes, F.; Fu, G. C. J.
Am. Chem. Soc. 2006, 128, 5360–5361; (c) Kamal, A.; Chouhan, G.
Tetrahedron Lett. 2005, 46, 1489–1491.
5
just as was observed for chlorination.
In summary, we have disclosed an efficient method for
the preparation of alkyl bromides from alcohols using
Br CCOCBr /PPh or Br CCO Et/PPh .
A typical procedure for the preparation of an alkyl bro-
mide: To a stirred solution of alcohol (0.25 mmol) and
2
. (a) Caserio, F. C.; Dennis, G. E.; Dewolfe, R. H.; Young, W. G. J. Am.
Chem. Soc. 1955, 77, 4182–4183; (b) Susan, D. T.; Joyce, T. D. J. Org.
Chem. 1987, 52, 4999–5003; (c) Magid, R. M.; Talley, B. G.; Souther,
S. K. J. Org. Chem. 1981, 46, 824–825; (d) Matveeva, E. D.; Kurts, A.
L.; Yalovskaya, A. I.; Nikishova, N. G.; Bundel, Y. G. Zh. Org. Khim.
3
3
3
3
2
3
1
989, 25, 652–653; (e) Pluempanupat, W.; Chavasiri, W. Tetrahedron
PPh3 (0.375 mmol) in dry CH Cl (0.5 mL) was added
2
2
Lett. 2006, 47, 6821–6823.
Br CCO Et (0.25 mmol) or Br CCOCBr (0.075 mmol) at
3. Munbunjong, W.; Lee, E. H.; Chavasiri, W.; Jang, D. O. Tetrahedron
Lett. 2005, 46, 8769–8771.
3
2
3
3
rt (30 °C) under a N atmosphere. After 15 min, the reac-
2
4
. (a) Meyers, C. Y.; Hou, Y.; Lutfi, H. G.; Saft, H. L. J. Org. Chem.
tion was quenched with cold water and the presence of
the corresponding product in the crude mixture was deter-
1
999, 64, 9444–9449; (b) Deno, N. C.; Potter, N. H. J. Am. Chem. Soc.
967, 89, 3555–3556; (c) Wagner, A.; Heitz, M. P.; Mioskowski, C.
1
1
mined by H NMR analysis utilizing toluene as an internal
Tetrahedron Lett. 1990, 31, 3141–3144; (d) Schaefer, J. P.; Higgins, J. J.
Org. Chem. 1967, 32, 1607–1608; (e) Wiley, G. A.; Hershkowitz, R. L.;
Rein, B. M.; Chung, B. C. J. Am. Chem. Soc. 1964, 86, 964–965.
. Pluempanupat, W.; Chantarasriwong, O.; Taboonpong, P.; Jang, D.
O.; Chavasiri, W. Tetrahedron Lett. 2007, 48, 223–226.
. (a) Gilbert, E. E. Tetrahedron 1969, 25, 1801–1806; (b) Sato, A.;
Sugano, M.; Horikoshi, H.; Yoshioka, S.; Nagaki, H. J.P. 02,145,541,
1990; Chem. Abstr. 1990, 113, 178250.; (c) Kawanishi, S. J.P.
standard or alternatively was isolated by purification
through silica gel column chromatography.
5
6
A reactivity study: To a stirred solution of alcohol
(
(
(
0.25 mmol) and
0.188 mmol) and Cl CCN (0.188 mmol) in dry CH Cl
2
a
mixture of brominating agent
3
2
0.5 mL) was added PPh (0.375 mmol) at rt (30 °C) under
3
3
3,007,980, 1958; Chem. Abstr. 1960, 54, 28884.
a N atmosphere. After 15 min, the amount of the corres-
2
7
. (a) Chaysripongkul, S. Master’s Thesis, Department of Chemistry,
Chulalongkorn University, 2003; (b) Kang, D. H.; Joo, T. Y.; Lee, E.
H.; Chaysripongkul, S.; Chavasiri, W.; Jang, D. O. Tetrahedron Lett.
ponding products in the crude mixture was determined
1
by H NMR analysis using toluene as an internal standard.
2
006, 47, 5693–5696; (c) Kang, D. H.; Joo, T. Y.; Chavasiri, W.; Jang,
Acknowledgements
D. O. Tetrahedron Lett. 2007, 48, 285–287.
. The reactivity of the brominating agents was assessed by the ratio of
the yields of 2-phenylethyl bromide and 2-phenylethyl chloride
obtained.
8
This work was financially supported by a joint research
project under the NRCT-KOSEF international coopera-