ChemCatChem
10.1002/cctc.201801987
FULL PAPER
Pharmacol. Toxicol., 1996, 78, 143-146; e) H. G. Chen, J. M. Tustin, P. G.
Wuts, T. K. Sawyer, C. W. Smith, Int. J. Pept. Protein Res., 1995, 45, 1-10.
3] For selected examples, a) P. Wang, Q. Shao, X. Cui, X. Zhu, X. Huang,
Adv. Funct. Mater., 2018, 28, 1705918; b) Z. Tian, Q. Li, J. Hou, Y. Li, S. Ai,
Catal. Sci. Technol., 2016, 6, 703–707; c) Z. Tian, Q. Li, J. Hou, L. Pei, Y.
Li, S. Ai, J. Catal., 2015, 331,193–202.
[
[
4] For selected examples, a) J. Li, S. Cheng, T. Du, N. Shang, S. Gao, C.
Feng, C. Wang, Z. Wang, New J. Chem., 2018, 42, 9324-9331; (b) Z. Ding,
C. Li, J. Chen, J. Zeng, H. Tang, Y.-J. Ding, Z.-P. Zhan, Adv. Synth. Catal.,
2017, 359, 2280-2287; c) S. Chen, L. Meng, B. Chen, W. Chen, X. Duan,
X. Huang, B. Zhang, H. Fu, Y. Wan, ACS Catal., 2017, 7, 2074-2087; d) S.
Doherty, J. G. Knight, T. Backhouse, E. Abood, H. Alshaikh, I. J. S.
Fairlamb, R. A. Bourne, T. W. Chamberlainc, R. Stones, Green Chem.,
Scheme 6. Proposed reaction pathway of selective hydrogenation of α,β-
unsaturated carbonyls.
O. Songis, A. Poater, L. Cavallo, A. M. Z. Slawin, C. S. J. Cazin, J. Am.
Chem. Soc., 2013, 135, 4588-4591; g) S. K. Mahato, R. U. Islam, C.
Acharya, M. J. Witcomb, K. Mallick, ChemCatChem, 2014, 6, 1419-1426;h)
L. Chen, H. Chen, Y. Li, Chem. Commun., 2014, 50, 14752-14755; i) M. L.
Kantam, R. Kishore, J. Yadav, M. Sudhakar, A. Venugopal, Adv. Synth.
Catal., 2012, 354, 663-669. j) B. Ding, Z. Zhang, Y. Liu, M. Sugiya, T.
Imamoto, W. Zhang, Org. Lett., 2013, 15, 3690-3693.
Conclusions
In conclusion, we have developed highly chemoselective
hydrogenation of α,β-unsaturated carbonyls to saturated
carbonyls catalyzed by an inexpensive, active, and
heterogeneous cobalt nanostructured catalyst. A broad set of α,β-
aromatic and aliphatic unsaturated carbonyl compounds was
selectively reduced to their corresponding saturated carbonyls in
high yields with good functional groups tolerance. Meanwhile, the
[
5] For selected examples, a) A. Aktas, Y. Gok, Catal. Lett., 2015,145,
631−639; b) T. Wdowik, C. Samojłowicz, M. Jawiczuk, M. Maliꢀska, K.
Woꢁniak, K. Grela, Chem. Commun., 2013, 49, 674−676; c) Z.
Strassberger, M. Mooijman, E. Ruijter, A. H. Alberts, C. Graaff, R. V. A.
Orru, G. A. Rothenberg, Appl. Organometal. Chem., 2010, 24, 142−146; d)
C. A. Mebi, R. P. Nair, B. J. Frost, Organometallics, 2007, 26, 429-438; e)
Sasson, Y.; Blum, J. J. Org. Chem., 1975, 40, 1887; e) W. Li, X.-F. Wu, Eur.
J. Org. Chem., 2015, 331-335; f) B. Ding, Z. Zhang, Y. Liu, M. Sugiya, T.
Imamoto, W. Zhang, Org. Lett., 2013, 15, 3690-3693; g) M. L. Kantam, R.
Kishore, J. Yadav,M. Sudhakar and A. Venugopal, Adv. Synth. Catal., 2012,
354, 663-669; h) Y. Gao, J. Wang, A. Han, S. Jaenicke, G. K. Chuah, Catal.
Sci. Technol., 2016, 6, 3806-3813.
x
optimal catalyst CoO @NC-800 is also applicable for one-pot
direct synthesis of saturated ketones starting from readily
available aldehydes and ketones, including an important bioactive
and medicinal Loureirin A, in a cost-effective and green manner.
To the best of our knowledge, this is the first example using a
heterogeneous non-noble metal catalyst for the chemoselcetive
hydrogenation of C=C bond of α,β-unsaturated carbonyls.
[
6] For selected examples, a) C. Queffelec, S. H. Schlindwein, D. Gudat, V.
Silvestre, M. Rodriguez-Zubiri, F. Fayon, B. Bujoli, Q. Wang, R.
Boukherroub, S. Szunerits, ChemCatChem, 2017, 9, 432-439; b) S.
Jagtap, Y. Kaji, A. Fukuoka, K. Hara, Chem. Commun., 2014, 50, 5046-
Acknowledgements
5048; c) X. Li, L. Li, Y. Tang, L. Zhong, L. Cun, J. Zhu, J. Liao, J. Deng, J.
Org. Chem., 2010, 75, 2981-2988; d) Z. Ba´an, Z. Finta, G. Keglevich and
I. Hermecz, Green Chem., 2009, 11, 1937-1940; (e) H. Sato, T. Fujihara, Y.
Obora, M. Tokunaga, J. Kiyosu, Y. Tsuji, Chem. Commun., 2007, 269-271;
f) Y. Kanazawa, Y. Tsuchiya, K. Kobayashi, T. Shiomi, J.-I. Itoh, M. Kikuchi,
Y. Yamamoto, H. Nishiyama, Chem.;Eur. J., 2006, 12, 63-71.
We gratefully acknowledge the start-up financial support from
Qingdao Institute of Bioenergy and Bioprocess Technology
(
QIBEBT), Chinese Academy of Sciences (Grant No.
Y6710619KL), 13th-Five Key Project of the Chinese Academy of
Sciences (Grant No. Y7720519KL). Y.Y is also grateful to the
support of Royal Society-Newton Advanced Fellowship (NAF-R2-
[7] For selected examples, a) J. L. Gomez-Lopez, D. Chavez, M. Parra-Hake,
A. T. Royappa, A. L. Rheingold, D. B. Grotjahn, V. Miranda-Soto,
Organometallics, 2016, 35, 3148-3153; b) S.-j. Chen, G.-P. Lu, C. Cai, RSC
Adv., 2015, 5, 13208–13211; c) D. Gꢂlcemal, A. G. Gꢃkꢄe, S. Gꢂlcemal, B.
ꢅetinkaya, RSC Adv., 2014, 4, 26222−26230; d) X. Wang, Z. Han, Z. Wang,
K. Ding, Angew. Chem. Int. Ed., 2012, 51, 936-940; e) S. Sakaguchi, T.
Yamaga, Y. Ishii, J. Org. Chem., 2001, 66, 4710-4712; f) J. Blum, Y.
Sasson, S. Iflah, Tetrahedron Lett., 1972, 13, 1015-1018.
180695).
Keywords: nanostructured cobalt catalyst • selective
hydrogenation • unsaturated ketones • ketones• one-pot method
[
1] a) P. Dupau, in Organometallics as Catalysts in the Fine Chemical Industry;
Eds: M. Beller, H.-U. Blaser), Springer, Heidelberg, 2012; b) A. Haskel, E.
[8] For selected examples, see: a) A. Lator, S. Gaillard, A. Poater, J. Renaud,
Chem. Eur. J., 2018, 24, 5770-5774; b) M.-J. Zhang, D.-W. Tan, H.-X. Li,
D. J. Young, H.-F. Wang, H.-Y Li, J.-P. Lang, J. Org. Chem., 2018, 83,
1204–1215. c) R. Noyori, I. Umeda, T. Ishigami, J. Org. Chem., 1972, 37,
2784–2788; b) F. K. Scharnagl, M. F. Hertrich, F. Ferretti, C. Kreyenschulte,
H. Lund, R. Jackstell, M. Beller, Sci. Adv., 2018, 4, eaau1248.
[10] T. Song, P. Ren, Y.-N. Duan, Z.-Z. Wang, X.-F. Chen, Y. Yang, Green
Chem., 2018, 20, 4629-4637.
(
Keinan, Handbook of Organopalladium Chemistry (Eds.:E.-i. Negishi, A. de,
Meijere), Wiley, New York, 2002, vol. 2, p. 2767; pp. 47; c) P. Gallezot, D.
Richard, Catal. Rev. Sci. Eng., 1998, 40, 81; d) E. Keinan, N. Greenspoon,
Comprehensive Organic Synthesis (Eds.: B. M. Trost, I. Fleming),
Pergamon Press, Oxford, UK, 1991, vol. 8, p. 523; e) D. Caine, Org. React.
1
976, 23, 1-258; e) E. Keinan, N. Greenspoon, The Chemistry of Enones
Eds.: S. Patai, Z. Rappoport), Wiley, Chichester, UK, 1989, vol. 2, p. 923.
f) C. Li, X. Zhao, A. Wang, G. W. Huber, T. Zhang, Chem. Rev., 2015, 115,
1559–11624; (g) S. Vernuccio, P. R. Rohr, J. Medlock, Ind. Eng. Chem.
(
1
Catal., 1994, 151, 60-66.
Res., 2015, 54, 11543–11551; (h) L. L. Adduci, T. A. Bender, J. A.
Dabrowski, M. R. Gagné, Nat. Chem., 2015, 7, 576-581.
[
2] a) H.-Z. Hao, A.-D. He, D.-C. Wang, Z. Yin, Y,-J. Zhou, G. Liu, M.-L., Liang,
X.-W. Da, G.-Q. Yao, W. Xie, J.-Z. Xiang, Z.-Y. Ming, Euro. J. Pharmacol.,
[12] a) X. Chen, K. Qian, Q. Chen, Euro. J. Med. Chem., 2015, 93, 492-500;
b) X. Bai, T.He, J. Liu, Y. Wang, L. Fan, K. Tao, J. Shi, C. Tang, L. Su,
D. Hu, Exp. Dermatol., 2015, 24, 355-360.
2015, 746, 63-69; b) S. Cheenpracha, C. Karalai, C. Ponglimanont, S.
Subhadhirasakul, S. Tewtrakul, Bioorg. Med. Chem., 2006, 14, 1710-1714;
c) M. Kobori, H. Shinmoto, T. Tsushida, K. Shinohara, Cancer Lett., 1997,
[13] a) K.-N. Yong, J.-C. Lv, H.-J. Gu, X. Chen, Chinese patent, 2008, CN101
250099A; b) X.-J. Wang, C. Yang, X.-H. Wang, C. Huang, J. Yunnan
Univ. (Nat. Sci.), 2018, 40, 748-751.
119, 207-212; d) L. Mathiesen, K. E. Malterud, M. S. Nenseter, R. B. Sund,
[14] Y. Duan, T. Song, X. Dong, Y. Yang, Green Chem., 2018, 20, 2821-2828.
This article is protected by copyright. All rights reserved.