RSC Advances
Paper
and G. Pinna, Curr. Org. Chem., 2012, 16, 2921–2945; (c)
C. E. Castro, Reviews of Environmental Contamination and
Toxicology, Springer, New York, 1998, 155, pp. 1–67; (d)
G. L. Larson, Org. React., 2008, 71, 5–119; (e) T. Hennebel,
J. Benner, P. Clauwaert, L. Vanhaecke, P. Aelterman,
R. Callebaut, N. Boon and W. Verstraete, Biotechnol. Lett.,
´
˜
2011, 33, 89–95; (f) A. F. Canete, C. O. Salas and
F. C. Zacconi, Molecules, 2013, 18, 398–407.
2 (a) K. Inoue, A. Sawada, I. Shibata and A. Baba, Tetrahedron
Lett., 2001, 42, 4661–4663; (b) A. Rahm, R. Amardeil and
M. Degueil-Castaing, J. Organomet. Chem., 1989, 371, 4–8;
(c) M. Pereyre, J. P. Quintard and A. Rahm, Reduction of
Organic Halides in Tin in Organic Synthesis, Butterworth,
London, 1986.
3 (a) C. Chatgilialoglu, Acc. Chem. Res., 1992, 25, 188–194; (b)
R. Boukherroub, C. Chatgilialoglu and G. Manuel,
Organometallics, 1996, 15, 1508–1510; (c) J. Yang and
M. Brookhart, Adv. Synth. Catal., 2009, 351, 175–187.
4 S. Krishnamurthy and H. C. Brown, J. Org. Chem., 1980, 45,
849–856.
Scheme 3 Control experiments.
5 S. Krishnamurthy and H. C. Brown, J. Org. Chem., 1982, 47,
276–280.
6 (a) A. F. Barrero, E. J. Alvarez-Manzaneda, R. Chahboun,
R. Meneses and J. L. Romera, Synlett, 2001, 4, 485–488; (b)
S. Zinovyev, A. Perosa, S. Yut and P. Tundo, J. Catal.,
2002, 211, 347–354; (c) J. M Khurana, S. Kumar and
B. Nand, Can. J. Chem., 2008, 86, 1052–1054.
Scheme 4 Possible mechanism.
7 (a) T. Hara, K. Mori, M. Oshiba, T. Mizugaki, K. Ebitania and
K. Kaneda, Green Chem., 2004, 6, 507–509; (b) G. L. Larson
and J. L. Fry, Org. React., 2008, 71, 1–737; (c) T. Hara,
T. Kaneta, K. Mori, T. Mitsudome, T. Mizugaki, K. Ebitanic
and K. Kaneda, Green Chem., 2007, 9, 1246–1251.
8 (a) A. Jana, J. Mondal, P. Borah, S. Mondal, A. Bhaumik and
Y. Zhao, Chem. Commun., 2015, 51, 10746–10749; (b)
M. C. Haibach, B. M. Stoltz and R. H. Grubbs, Angew.
Chem., Int. Ed., 2017, 56, 15123–15126.
Conclusions
In summary, we report a practical method for dehalogenation of
benzyl halides and preparation of diarylmethanes by using
a H3PO3 system. Various benzyl halides could be readily
reduced by the H3PO3/I2 combination for the rst time. In the
absence of I2, electrophilic substitution reactions between
benzyl halides and arenes occurred smoothly, furnishing dia-
rylmethanes in good yields. This method provides a simple,
cheap and green approach for the reduction of benzyl halides
and synthesis of diarylmethanes.
9 K. Fujita, M. Owaki and R. Yamaguchi, Chem. Commun.,
2002, 2964–2965.
´
˜
10 A. F. Canete, C. O. Salas and F. C. Zacconi, Molecules, 2013,
18, 398–407.
11 H. Guo, K.-i. Kanno and T. Takahashi, Chem. Lett., 2004, 33,
1356–1357.
Conflicts of interest
12 (a) B. Sahoo, A. E. Surkus, M. M. Pohl, J. Radnik,
M. Schneider, S. Bachmann, M. Scalone, K. Junge and
M. Beller, Angew. Chem., Int. Ed., 2017, 56, 11242–11247;
There are no conicts to declare.
´
´
(b) F. Ungvary and L. Marko, J. Organomet. Chem., 1980,
193, 379–382.
Acknowledgements
13 J. Xiao and L.-B. Han, Tetrahedron, 2019, 75, 3510–3515.
14 (a) J. S. Kim and D. T. Quang, Chem. Rev., 2007, 107, 3780–
3799; (b) Y.-Q. Long, X.-H. Jiang, R. Dayam, T. Sanchez,
R. Shoemaker, S. Sei and N. Neamati, J. Med. Chem., 2004,
47, 2561–2573; (c) W. N. Washburn, J. Med. Chem., 2009,
52, 1785–1794; (d) T. Brotin and J.-P. Dutasta, Chem. Rev.,
2009, 109, 88–130.
JX is thankful for a postdoc fellowship from AIST and nancial
support from the National Natural Science Foundation of China
(21703061) and the Natural Science Foundation of Hunan
province (2017JJ3081).
Notes and references
15 (a) C. Friedel and J. M. Cras, Compt. Rend., 1877, 84, 1450;
(b) G. A. Olah, S. J. Kuhn and S. H. Flood, J. Am. Chem. Soc.,
1 (a) F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev., 2002,
102, 4009–4092; (b) G. Chelucci, S. Baldino, G. A. Pinna
22346 | RSC Adv., 2019, 9, 22343–22347
This journal is © The Royal Society of Chemistry 2019