Page 5 of 6
Pleas Ce hd eo mni oc ta al dS j cu ise tn mc ea rgins
Journal Name
ARTICLE
Reaction of 1 with norbornene
We also investigated the limitation of the substrate scope.
Cyclization reactions of with cyclic and acyclic internal
Notes and references
DOI: 10.1039/C5SC03174E
1
(a) N. Winterton, G. J. Leigh, Modern Coordination Chemistry:
The Legacy of Joseph Chatt (RSC, Cambridge, UK, 2002); (b)
R. Jones, Chem. Rev. 1968, 68, 785 – 806.
1
alkenes such as 1,1-bis(trimethylsilyl)ethene, trans-
2
(a) J. Chatt, L. A. Duncanson, L. M. Venanzi, J. Chem. Soc.
diphenylethene, cyclohexene, cyclohexadiene did not proceed
1
955, 4456 – 4460; (b) J. Chatt, L. A. Duncanson, J. Chem.
o
even under heating conditions (r.t. ~ 150 C), presumably
Soc. 1953, 2939 – 2947; (c) M. Dewar, Bull. Soc. Chim. Fr.
1951, 18, C79.
because of steric hindrance. By contrast, the reaction of
norbornene , which features a strained bicyclic skeleton,
underwent stereo-selective [4+2] cycloaddition at 90 C, and
1 with
3
4
5
(a) W. C. Zeise, Poggendorff’s Ann. Phys. 1837, 40, 234 – 252;
5
(
(
b) W. C. Zeise, Poggendorff’s Ann. Phys. 1831, 21, 497 – 541;
o
6
c) W. C. Zeise, Poggendorff’s Ann. Phys. 1827, 9, 632 – 633;
was obtained as a solo product in 83 % yield (Scheme 3). The
stereoselectivity of the reaction originated probably from the
(d) W. C. Zeise, Overs. K. Dan. Vidensk. Selsk. Forh. 1825, 13.
(a) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46
,
3
1
6
410 – 3449; (b) G. Frenking, N. Fröhlich, Chem. Rev. 2000,
fact that the steric hindrance of the CH moiety is smaller than
2
00, 717 – 774; (c) A. Dedieu, Chem. Rev. 2000, 100, 543 –
that of the CH CH part of 5. Retro-[4+2] cycloaddition of 6
2
2
00.
o
proceeded thermally by heating at 150 C, which cleanly
reproduced and
(a) H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K.
Radacki, C. W. Tate, A. Vargas, Q. Ye, Nature 2015, 522, 327
1
5.
–
2
2
330; (b) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed.
015, 54, 6400 – 6441; (c) D. W. Stephan, Acc. Chem. Res.
015, 48, 306 – 316; (d) S. K. Mandal, H. W. Roesky, Acc.
Chem. Res. 2012, 45, 298 – 307; (e) D. Martin, M.
Soleilhavoup, G. Bertrand, Chem. Sci. 2011, , 389 – 399; (f)
S. Yao, Y. Xiong, M. Driess, Organometallics 2011, 30, 1748 –
767; (g) P. P. Power, Acc. Chem. Res. 2011, 44, 627 – 637;
h) P. P. Power, Nature 2010, 463, 171 – 177; (i) D. W.
2
1
(
Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46 – 76.
(a) T. J. Hadlington, J. Li, M. Hermann, A. Davey, G. Frenking,
C. Jones, Organometallics 2015, 34, 3175 – 3185; (b) C. A.
Caputo, Z. Zhu, Z. D. Brown, J. C. Fettinger, P. P. Power, Chem.
Commun. 2011, 47, 7506 – 7508; (c) S. Ishida, T. Iwamoto, M.
Kira, Heteroatom. Chem. 2011, 22, 432 – 437; (d) J. S. Han, T.
Sasamori, Y. Mizuhata, N. Tokitoh, J. Am. Chem. Soc. 2010,
6
Scheme 3. Stereo-selective [4+2] cycloaddition reaction between 1
and norbornene 5 and its retro-conversion.
1
32, 2546 – 2547; (e) R. Kinjo, M. Ichinohe, A. Sekiguchi, N.
Takagi, M. Sumimoto, S. Nagase, J. Am. Chem. Soc. 2007,
29, 7766 – 7767; (f) J. S. J. McCahill, G. C. Welch, D. W.
1
Stephan, Angew. Chem. Int. Ed. 2007, 46, 4968 – 4971; (g) N.
Wiberg, S. K. Vasisht, G. Fischer, P. Z. Mayer, Anorg. Allg.
Chem. 2004, 630, 1823 – 1828; (h) T. Ohtaki, W. Ando,
Organometallics 1996, 15, 3103 – 3105.
(a) B.-H, Xu, K. Bussmann, R. Fröhlich, C. G. Daniliuc, J. G.
Brandenburg, S. Grimme, G. Kehr, G. Erker, Organometallics
Conclusions
7
In summary, we have demonstrated a [4+2] cycloaddition
2
013, 32, 6745 – 6752; (b) S. Schwendemann, S. Oishi, S.
Saito, R. Fröhlich, G. Kehr, G. Erker, Chem. Asian, J. 2013,
12 – 217; (c) B.-H, Xu, R. A. A. Yanez, H. Nakatsuka, M.
Kitamura, R. Fröhlich, G. Kehr, G. Erker, Chem. Asian, J. 2012,
, 1347 – 1356; (d) M. A. Dureen, C. C. Brown, D. W. Stephan,
reaction between
compound at room temperature. We also showed regio-
selective and stereo-selective [4+2] cycloaddition of with
1
and ethylene which afforded bicyclo[2.2.2]
8,
2
2
1
7
styrene derivatives and norbornene, respectively. All of the
cycloadducts underwent retro-[4+2] cycloaddition reactions
Organometallics 2010, 29, 6594 – 6607; (e) T. Voss, C. Chen,
G. Kehr, E. Nauha, G. Erker, D. W. Stephan, Chem. Eur. J.
2
010, 16, 3005 – 3008; (f) J.-B. Sortaiste, T. Voss, G. Kehr, R.
that reproduced
1
and the corresponding alkenes
Fröhlich, G. Erker, Chem. Commun. 2009, 45, 7417 – 7418.
(a) Y. Peng, B. D. Ellis, X. Wang, J. C. Fettinger, P. P. Power,
Science 2009, 325, 1668 – 1670. For reversible [1+2]
cycloaddition between stannylene and alkyne, see: (b) L. R.
Sita, R. D. Bickerstaff, J. Am. Chem. Soc. 1988, 110, 5208 –
5209.
R. Rodriguez, D. Gau, T. Kato, N. Saffon-Merceron, A. D.
Cózar, F. P. Cossío, A. Baceiredo, Angew. Chem. Int. Ed. 2011,
50, 10414 – 10416.
quantitatively. Computational studies using DFT calculations
revealed that the transition state for the cycloaddition is
concerted, but highly asynchronous. Studies on reversible
8
9
cycloaddition of
bonds, and its application are currently under investigation in
our laboratory.
1 with substrates featuring other unsaturated
20
1
1
0 F. Lips, J. C. Fettinger, A. Mansikkamäki, H. M. Tuononen, P. P.
Power, J. Am. Chem. Soc. 2014, 136, 634 – 637.
Acknowledgements
1 T. Sasamori, T. Sugahara, T. Agou, K. Sugamata, J.-D. Guo, S.
We are grateful to Nanyang Technological University (NTU)
and PSF/A*STAR (SERC 1321202066) of Singapore, for financial
support. H.H. thanks the High Performance Computing Centre
of NTU for computer resources.
Nagase, N. Tokitoh, Chem. Sci. 2015,
6
,
DOI:
1
0.1039/C5SC01266J.
1
2 (a) C. E. Radzewich, M. P. Coles, R. F. Jordan, J. Am. Chem.
Soc. 1998, 120, 9384 – 9385.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins