Page 7 of 9
Journal of the American Chemical Society
14. Lwin, S.; Wachs, I. E., Olefin Metathesis by Supported Metal
Oxide Catalysts. ACS Catal. 2014, 4, 2505-2520.
15. Basrur, A. G.; Patwardhan, S. R.; Was, S. N., Propene metathesis
over silica-supported tungsten oxide catalyst—Catalyst induction
mechanism. J. Catal. 1991, 127, 86-95.
34. Conley, M. P.; Mougel, V.; Peryshkov, D. V.; Forrest, W. P.;
Gajan, D.; Lesage, A.; Emsley, L.; Copéret, C.; Schrock, R. R., A
Well-Defined Silica-Supported Tungsten Oxo Alkylidene Is a Highly
Active Alkene Metathesis Catalyst. J. Am. Chem. Soc. 2013, 135,
19068-19070.
1
2
3
4
5
6
7
8
9
16. Ding, K.; Gulec, A.; Johnson, A. M.; Drake, T. L.; Wu, W.; Lin,
Y.; Weitz, E.; Marks, L. D.; Stair, P. C., Highly Efficient Activation,
Regeneration, and Active Site Identification of Oxide-Based Olefin
Metathesis Catalysts. ACS Catal. 2016, 6, 5740-5746.
17. Howell, J. G.; Li, Y.-P.; Bell, A. T., Propene Metathesis over
Supported Tungsten Oxide Catalysts: A Study of Active Site
Formation. ACS Catal. 2016, 6, 7728-7738.
18. Lwin, S.; Li, Y.; Frenkel, A. I.; Wachs, I. E., Nature of WOx Sites
on SiO2 and Their Molecular Structure–Reactivity/Selectivity
Relationships for Propylene Metathesis. ACS Catal. 2016, 6, 3061-
3071.
19. Lwin, S.; Wachs, I. E., Catalyst Activation and Kinetics for
Propylene Metathesis by Supported WOx/SiO2 Catalysts. ACS Catal.
2017, 7, 573-580.
20. Amakawa, K.; Wrabetz, S.; Kröhnert, J.; Tzolova-Müller, G.;
Schlögl, R.; Trunschke, A., In Situ Generation of Active Sites in
Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 11462-11473.
21. Amakawa, K.; Sun, L.; Guo, C.; Hävecker, M.; Kube, P.; Wachs,
I. E.; Lwin, S.; Frenkel, A. I.; Patlolla, A.; Hermann, K.; Schlögl, R.;
Trunschke, A., How Strain Affects the Reactivity of Surface Metal
Oxide Catalysts. Angew. Chem. Int. Ed. 2013, 52, 13553-13557.
22. Chakrabarti, A.; Wachs, I. E., Molecular Structure–Reactivity
Relationships for Olefin Metathesis by Al2O3-Supported Surface
MoOx Sites. ACS Catal. 2018, 8, 949-959.
23. Mougel, V.; Chan, K.-W.; Siddiqi, G.; Kawakita, K.; Nagae, H.;
Tsurugi, H.; Mashima, K.; Safonova, O.; Copéret, C., Low
Temperature Activation of Supported Metathesis Catalysts by
Organosilicon Reducing Agents. ACS Cent. Sci. 2016, 2, 569-576.
24. Yamamoto, K.; Chan, K. W.; Mougel, V.; Nagae, H.; Tsurugi, H.;
Safonova, O. V.; Mashima, K.; Coperet, C., Silica-supported isolated
molybdenum di-oxo species: formation and activation with
organosilicon agent for olefin metathesis. Chem. Commun. 2018, 54,
3989-3992.
25. Schrock, R. R.; Lopez, L. P. H.; Hafer, J.; Singh, R.; Sinha, A.;
Müller, P., Olefin Metathesis Reactions Initiated by d2 Molybdenum
or Tungsten Complexes. Organometallics 2005, 24, 5211-5213.
26. Marinescu, S. C.; King, A. J.; Schrock, R. R.; Singh, R.; Müller,
P.; Takase, M. K., Simple Molybdenum(IV) Olefin Complexes of the
Type Mo(NR)(X)(Y)(olefin). Organometallics 2010, 29, 6816-6828.
27. de la Mata, F. J.; Grubbs, R. H., Synthesis and Reactions of
Tungsten Oxo Vinylalkylidene Complexes:ꢀ Reactions of
35. Mougel, V.; Copéret, C., Isostructural Molecular and Surface
Mimics of the Active Sites of the Industrial WO3/SiO2 Metathesis
Catalysts. ACS Catal. 2015, 5, 6436-6439.
36. Schowner, R.; Frey, W.; Buchmeiser, M. R., Cationic Tungsten-
Oxo-Alkylidene-N-Heterocyclic Carbene Complexes: Highly Active
Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2015, 137, 6188-6191.
37. Schrock, R. R.; Copéret, C., Formation of High-Oxidation-State
Metal–Carbon Double Bonds. Organometallics 2017, 36, 1884-1892.
38. Schrock, R. R.; Duval-Lungulescu, M.; Tsang, W. C. P.;
Hoveyda, A. H., Catalytic Homologation of Vinyltributylstannane to
Allyltributylstannane by Mo(IV) Complexes in the Presence of
Ethylene. J. Am. Chem. Soc. 2004, 126, 1948-1949.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
39. McLain, S. J.; Sancho, J.; Schrock, R. R., Metallacyclopentane to
metallacyclobutane ring contraction. J. Am. Chem. Soc. 1979, 101,
5451-5453.
40. Tsang, W. C. P.; Hultzsch, K. C.; Alexander, J. B.; Bonitatebus, P.
J.; Schrock, R. R.; Hoveyda, A. H., Alkylidene and Metalacyclic
Complexes of Tungsten that Contain a Chiral Biphenoxide Ligand.
Synthesis, Asymmetric Ring-Closing Metathesis, and Mechanistic
Investigations. J. Am. Chem. Soc. 2003, 125, 2652-2666.
41. Wang, S.-Y. S.; VanderLende, D. D.; Abboud, K. A.; Boncella, J.
M., Metallacyclopentane Formation:ꢀ A Deactivation Pathway for a
Tungsten(VI) Alkylidene Complex in Olefin Metathesis Reactions.
Organometallics 1998, 17, 2628-2635.
42. Tsang, W. C. P.; Jamieson, J. Y.; Aeilts, S. L.; Hultzsch, K. C.;
Schrock, R. R.; Hoveyda, A. H., Investigations of Reactions between
Chiral Molybdenum Imido Alkylidene Complexes and Ethylene:ꢀ
Observation of Unsolvated Base-Free Methylene Complexes,
Metalacyclobutane and Metalacyclopentane Complexes, and
Molybdenum(IV) Olefin Complexes. Organometallics 2004, 23,
1997-2007.
43. Robbins, J.; Bazan, G. C.; Murdzek, J. S.; O'Regan, M. B.;
Schrock, R. R., Reduction of molybdenum imido-alkylidene
complexes in the presence of olefins to give molybdenum(IV)
complexes. Organometallics 1991, 10, 2902-2907.
44. Fellmann, J. D.; Rupprecht, G. A.; Schrock, R. R., Rapid selective
dimerization of ethylene to 1-butene by a tantalum catalyst and a new
mechanism for ethylene oligomerization. J. Am. Chem. Soc. 1979,
101, 5099-5101.
45. Simmons, E. M.; Hartwig, J. F., On the Interpretation of
Deuterium Kinetic Isotope Effects in C-H Bond Functionalizations by
Transition-Metal Complexes. Angew. Chem. Int. Ed. 2012, 51, 3066-
3072.
46. Arndt, S.; Schrock, R. R.; Müller, P., Synthesis and Reactions of
Tungsten Alkylidene Complexes That Contain the 2,6-
Dichlorophenylimido Ligand. Organometallics 2007, 26, 1279-1290.
47. Solans-Monfort, X.; Coperet, C.; Eisenstein, O., Shutting Down
Secondary Reaction Pathways: The Essential Role of the Pyrrolyl
Ligand in Improving Silica Supported d0-ML4 Alkene Metathesis
Catalysts from DFT Calculations. J. Am. Chem. Soc. 2010, 132, 7750-
7757.
48. Solans-Monfort, X.; Copéret, C.; Eisenstein, O., Oxo vs Imido
Alkylidene d0-Metal Species: How and Why Do They Differ in
Structure, Activity, and Efficiency in Alkene Metathesis?
Organometallics 2012, 31, 6812-6822.
49. Larionov, E.; Li, H.; Mazet, C., Well-defined transition metal
hydrides in catalytic isomerizations. Chem. Commun. 2014, 50, 9816-
9826.
WCl2(O)(PX3) (X
=
OMe, R) Precursors with 3,3-
Diphenylcyclopropene. Organometallics 1996, 15, 577-584.
28. Javier de la Mata, F., Synthesis and characterization of tungsten
oxo alkylidene complexes via the reaction of WCl2(O)[PX3]3 (PX3 =
P(OMe)3, PMe2Ph, PMePh2) with 4,8-dioxaspiro[2,5]oct-1-ene
(ketalcyclopropene). J. Organomet. Chem. 1996, 525, 183-189.
29. Peryshkov, D. V.; Forrest, W. P.; Schrock, R. R.; Smith, S. J.;
Müller, P., B(C6F5)3 Activation of Oxo Tungsten Complexes That Are
Relevant to Olefin Metathesis. Organometallics 2013, 32, 5256-5259.
30. Hock, A. S.; Schrock, R. R.; Hoveyda, A. H., Dipyrrolyl
Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts.
J. Am. Chem. Soc. 2006, 128, 16373-16375.
31. Gordon, C. P.; Yamamoto, K.; Liao, W.-C.; Allouche, F.;
Andersen, R. A.; Copéret, C.; Raynaud, C.; Eisenstein, O., Metathesis
Activity Encoded in the Metallacyclobutane Carbon-13 NMR
Chemical Shift Tensors. ACS Cent. Sci. 2017, 3, 759-768.
32. Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.;
Hoveyda, A. H., Z-Selective Olefin Metathesis Reactions Promoted
by Tungsten Oxo Alkylidene Complexes. J. Am. Chem. Soc. 2011,
133, 20754-20757.
50. For recent discussion on computing entropies see reference below:
[a] Besora, M.; Vidossich, P.; Lledós, A.; Ujaque, G.; Maseras, F.,
Calculation of Reaction Free Energies in Solution: A Comparison of
Current Approaches. J. Phys. Chem. A 2018, 122, 1392-1399.; [b]
Falivene, L.; Barone, V.; Talarico, G., Unraveling the role of entropy
33. Peryshkov, D. V.; Schrock, R. R., Synthesis of Tungsten Oxo
Alkylidene Complexes. Organometallics 2012, 31, 7278-7286.
7
ACS Paragon Plus Environment