10.1002/cctc.201700952
ChemCatChem
COMMUNICATION
[3] (a) J. Seyden-Penne, Reductions by the Alumino- and Boro-hydrides in
Organic Synthesis; John Wiley & Sons, Inc: New York, 1997; (b) N. L.
Lampland, M. Hovey, D. Mukherjee, A. D. Sadow, ACS Catal. 2015, 5,
4219-4226.
Experimental section
General information. Unless otherwise stated, all manipulations were
performed under an atmosphere of argon or using standard Schlenk
techniques. Hydrogen gas (99.99%) was purchased from Shijiazhuang
Xisanjiao. Solvents were dried using standard procedures and degassed
with nitrogen. For example, tetrahydrofuran (THF) was distilled over
sodium/benzophenone, 1,4-dioxane was distilled over sodium and
diglyme (diethylene glycol dimethyl ether) was distilled over sodium
under reduced pressure. Analytical grade isopropanol, ethanol, methanol
and toluene were degassed by bubbling argon through them before use.
GC–MS was carried out on DSQII instrument (column: HP-5MS):
injector temp. 300 ºC; detector temp. 300 ºC; column temp. 40 ºC;
withdraw time 2 min, then 20 ºC/min to 230 ºC over 5 min. and then 20
ºC/min to 300 ºC; withdraw time 5 min. GC analysis was carried out on an
Agilent 6820 instrument using a polar capillary column (part number
19091N-113 HP-INNOWAX): injector temp. 300 °C; detector temp.
300 °C; column temp. 40 ºC; withdraw time 2 min, then 20 ºC/min to 230
ºC over 5 min. and then 20 ºC/min to 300 ºC; withdraw time for 5 min.
The purity of all the amide substrates was greater than 97% and these
were purchased from Beijing Innochem, Science & Technology. CAS
numbers for the amide substrates and products are included in Table S1
in the SI. All the liquid substrates and solid substrates were used directly.
Complexes A - D were prepared using previously reported routes.20-22
[4] For selected recent examples, see: (a) S. Hanada, E. Tsutsumi, Y.
Motoyama, H. Nagashima, J. Am. Chem. Soc. 2009,131, 15032-15040; (b)
S. Das, D. Addis, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2010,
132, 1770-1771; (c) S. Das, D. Addis, K. Junge, M. Beller, Chem. - Eur. J.
2011, 17, 12186-12192; (d) S. Park, M. Brookhart, J. Am. Chem. Soc.
2012, 134, 640-653; (e) S. Das, B. Wendt, K. Möller, K. Junge, M. Beller,
Angew. Chem., Int. Ed. 2012, 51, 1662-1666; (f) R. C. Chadwick, V.
Kardelis, P. Lim, A. Adronov, J. Org. Chem. 2014, 79, 7728-7733.
[5] (a) B. C. Challis, J. A. Challis, In The Chemistry of Amides; Zabicky, J.,
Patai, S., Eds.; John Wiley & Sons: London, 1970; (b) K. Ishihara, S.
Ohara, H. Yamamoto, J. Org. Chem. 1996, 61,4196-4197; (c) G. W. Bemis,
M. A. Murcko, J. Med. Chem. 1999, 42, 5095-5099; (d) R. M. Burk, D. F.
Woodward, Drug Dev. Res., 2007, 68, 147-155; (e) C. Cox, T. Lectka, Acc.
Chem. Res.2000, 33, 849-858; (f) E. B. Divito, M. Cascio, Chem. Rev.
2013, 113, 7343-7353; (g) M. X. Wang, Acc. Chem. Res. 2015, 48, 602-
611; (h) R. M. de Figueiredo, J. S. Suppo and J. M. Campagne, Chem. Rev.
2016, 116, 12029-12122.
[6] S. Werkmeister, K. Junge, M. Beller, Org. Process Res. Dev. 2014, 18,
289-302.
[7] (a) P. A. Dub, T. Ikariya, ACS Catal. 2012, 2, 1718-1741; (b) B. Zhao, Z.
Han, K. Ding, Angew. Chem., Int. Ed. 2013, 52, 4744-4788.
[8] (a) G. Beamson, A. J. Papworth, C. Philipps, A. M. Smith, R. Whyman, J.
Catal. 2010, 269, 93-102; (b) G. Beamson, A. J. Papworth, C. Philipps, A.
M. Smith, R. Whyman, J. Catal. 2011, 278, 228-238; (c) M. Stein, B. Breit,
Angew. Chem., Int. Ed. 2013, 52, 2231-2234; (d) R. Burch, C. Paun, X.-M.
Cao, P. Crawford, P. Goodrich, C. Hardacre, P. Hu, L. McLaughlin, J. Sá, J.
M. Thompson, J. Catal. 2011, 283, 89-97; (e) J. Coetzee, H. G. Manyar, C.
Catalytic study details
Under an atmosphere of argon, a stainless steel 50 mL autoclave,
equipped with a magnetic stir bar, was charged with the corresponding
amount of complex (A - D) (1 - 10 μmol), the desired amount of base
needed/or not (NaBH4, t-BuOK or KHDMS) (5 – 10 μmol) and the solvent
to be used (25 mL). A solution of the amide (1 - 10 mmol) in the solvent
(5 mL) was then added via syringe. The autoclave was purged by three
cycles of pressurization/venting with hydrogen (10 bar), then pressurized
with hydrogen (50 bar), sealed and disconnected from the hydrogen
source. The autoclave was pre-heated to the desired temperature (bath
temperature) and the contents stirred. After the corresponding reaction
time of 10 - 48 h, the autoclave was cooled to room temperature and the
pressure slowly released. The reaction mixture was filtered through a
plug of silica gel. Finally, the reaction mixture was diluted with ethyl
acetate and analyzed by GC-MS with n-hexadecane (50 mg) added as
an external standard; for analysis by gas chromatography the reaction
mixture was further diluted with ethyl acetate.
Hardacre, D. J. Cole-Hamilton, ChemCatChem 2013, 5, 2843-2847.
[9] A. Fersner, J. M. Karty, Y. Mo, J. Org. Chem. 2009, 74, 7245-7253.
[10] A. A. N. Magro, G. R. Eastham, D. J. Cole-Hamilton, Chem. Commun.
2007, 3154-3156.
[11] (a) D. L. Dodds, J. Coetzee, J. Klankermayer, S. Brosinski, W. Leitner,
D. J. Cole-Hamilton, Chem. Commun. 2012, 48, 12249-12262; (b) J.
Coetzee, D. L. Dodds, J. Klankermayer, S. Brosinski, W. Leitner, A. M. Z.
Slawin, D. J. Cole-Hamilton, Chem. - Eur. J. 2013, 19, 11039-11050; (c) T.
vom Stein, M. Meuresch, D. Limper, M. Schmitz, M. Hölscher, J. Coetzee,
D. J. Cole-Hamilton, J. Klankermayer, W. Leitner, J. Am. Chem. Soc. 2014,
136, 13217-13225; (d) M. Meuresch, S. Westhues, W. Leitner, J.
Klankermayer, Angew. Chem. Int. Ed. 2016, 55, 1392-1395; (e) J. R.
Cabrero-Antonino, E. Alberico, K. Junge, H. Jungea, M. Beller, Chem. Sci.
2016,7, 3432-3442; (f) M.-L. Yuan, J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, ACS
Catal. 2016, 6, 3665-3669; (g) M.-L. Yuan, J.-H. Xie, Q. -L. Zhou,
ChemCatChem 2016, 8, 3036-3040.
[12] (a) E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon, D. Milstein, J.
Am. Chem. Soc. 2010, 132, 16756-16758; (b) E. Balaraman, C.
Gunanathan, J. Zhang, L. J. W. Shimon, D. Milstein, Nat. Chem. 2011, 3,
609-614; (c) E. Balaraman, Y. Ben-David, D. Milstein, Angew. Chem., Int.
Ed. 2011, 50, 11702-11705; (d) R. Barrios-Francisco, E. Balaraman, Y.
Diskin-Posner, G. Leitus, L. J. W. Shimon, D. Milstein, Organometallics,
2013, 32, 2973-2982; (e) T. Zell, D. Milstein, Acc. Chem. Res. 2015, 48,
1979-1994. (f) J. A. Garg, S. Chakraborty, Y. Ben-David, D. Milstein, Chem.
Commun. 2016, 52, 5285-5288.
Acknowledgements
We acknowledge support from the National Natural Science
Foundation of China (21476060 and U1362204) and the Nature
Science Foundation of Hebei Province (B2014205049). GAS
thanks the Chinese Academy of Sciences for
fellowship.
a Visiting
[13]
(a) M. Ito, A. Sakaguchi, C. Kobayashi, T. Ikariya, J. Am. Chem. Soc.
Keywords: amide or amines; homogeneous catalysis;
hydrogenation; base-free; ruthenium
2007, 129, 290-291; (b) M. Ito, L.W. Koo, A. Himizu, C. Kobayashi, A.
Sakaguchi, T. Ikariya, Angew. Chem., Int. Ed. 2009, 48, 1324-1327; (c) M.
Ito, C. Kobayashi, A. Himizu, T. Ikariya, J. Am. Chem. Soc. 2010, 132,
11414-11415; (d) M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu, T.
Ikariya, J. Am. Chem. Soc. 2011, 133, 4240-4242.
[1] (a) K. Eller, E. Henkes, R. Rossbacher, H. Höke, Ullman’s Encyclopedia of
Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000, Amines,
Aliphatic. DOI: 10.1002/14356007.a 02_001; (b) S. A. Lawerence, Ed.
Amines: Synthesis, Properties and Applications; Cambridge University
Press: Cambridge, U.K., 2006.
[14] (a) S. Saito, T. Miura, I. Held, M. Suzuki, Y. Takada and R. Noyori, Jp.
Pat., WO2012102247A1, 2012, p42; (b) T. Miura, I. E. Held, S. Oishi, M.
Naruto, S. Saito, Tetrahedron Lett. 2013, 54, 2674-2678.
[2] A. M. Smith, R. Whyman, Chem. Rev. 2014, 114, 5477-5510.
[15] (a) J. M. John, S. H. Bergens, Angew. Chem. Int. Ed. 2011, 50, 10377-
This article is protected by copyright. All rights reserved.