4
768
Y. Zhao et al. / Tetrahedron Letters 53 (2012) 4766–4769
R
H
R
R
OOtBu
N3
O
intermediate 15 (R = alkyl, Ar) during the work-up (Scheme 3); fur-
tBuOO
tBuOO
ther oxidation of such an imine to a nitrile was impossible due to
the absence of a methine proton. A careful study on the oxidation
of azide 8o using limited reagents and a shorter reaction time al-
lowed us to obtain an appreciable amount of aldehyde 17 (Scheme
Ar
R
N3
Ar
N3
Ar
Ar
Ar
N3
8
11
12
13
R = H
PhI(OOtBu)2
OOtBu
4, Eq. 2), a product that was potentially generated through the
H
R
decomposition of imine intermediate 15 (R = H) (Scheme 3).
The radical nature of this reaction was indicated by conducting
a radical scavenger experiment, in which the reaction was shut
down upon the addition of BHT. A competitive experiment on
the oxidation of azides 8b and 8p was performed (Scheme 5).
The result showed that the oxidation occurred more readily on
8p. This selectivity may be ascribed to a radical deprotonation pro-
cess which occurs preferentially on a secondary carbon. We
acknowledge that the mechanism remains unclear and requires
further investigation.
OOtBu
I
OOtBu
-N2
I
C
N
Ar
N
Ar
N
Ph
-tBuOOH
Ph
15
9
N2
R = H
1
4
H2O R = Alkyl, Ar
R
R
H2O
Ar
NH
Ar
O
1
6
10
In summary, a mild and efficient azide oxidation using inexpen-
sive and commercially available DIB/TBHP has been developed.
Further investigation on the mechanistic profile is in progress.
Scheme 3. Proposed mechanism for the azide oxidation.
N3
O
Acknowledgments
87%
8
m
10m
We thank the National University of Singapore for financial sup-
port (Grant No. 143-000-509-112) and for a scholarship to Y. Zhao
DIB, TBHP
MeCN
(1)
N3
O
(
NUS Research Scholarship).
76%
References and notes
8n
10n
1.
(a) Friedrich, K.; Wallenfels, K. In The Chemistry of the Cyano Group; Rappoport,
Z., Ed.; Wiley: New York, 1970. Patai Series; (b) Arseniyadis, S.; Kyler, K. S.;
Watt, D. S. In Organic Reactions; Dauben, W. G., Ed.; Wiley: New York, 1984;
Vol. 31, pp 1–374; (c) Fatiadi, A. J. In Preparation and Synthetic Applications of
Cyano Compounds; Patai, S., Rappaport, Z., Eds.; Wiley: New York, 1983; (d)
Larock, R. C. Comprehensive Organic Transformations; VCH: New York, 1989; (e)
Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances:
Synthesis Patents, Applications, 4th ed.; Georg Thieme: Stuttgart, 2001; (f) Smith,
M. B.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and
Structure, 6th ed.; Wiley, Hoboken: New Jersey, 2007.
MeO
AcO
CN
9
1
o
7
58%
25%
MeO
AcO
N3
DIB, TBHP
MeCN
+
(2)
MeO
AcO
8o
O
2. Fleming, F. Nat. Prod. Rep. 1999, 16, 597.
3.
(a) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359; (b) Jones, L. H.;
Summerhill, N. W.; Swain, N. A.; Mills, J. E. Med. Chem. Commun. 2010, 1, 309;
Scheme 4. Oxidation of azides to carbonyl compounds.
(
c) Njar, V. C. O.; Brodie, A. M. H. Drugs 1999, 58, 233; (d) Murdoch, D.; Keam, S.
J. Drugs 2005, 65, 2379.
4
.
(a) Okada, A.; Watanabe, K.; Umeda, K.; Miyakado, M. Agric. Biol. Chem. 1991,
55, 2765; (b) Chiang, W. C. K.; Pusateri, D. J.; Leitz, R. E. A. J. Agric. Food Chem.
1998, 1018, 46.
N3
CN
(
0.1 mmol)
0.1 mmol)
1
0%
5. (a) Tang, J.; Hua, J.; Wu, W.; Li, J.; Jin, Z.; Long, Y.; Tian, H. Energy Environ. Sci.
2
2
010, 3, 1736; (b) Lee, W.; Cho, N.; Kwon, J.; Ko, J.; Hong, J.-I. Chem. Asian J.
012, 7, 343; (c) Chang, Y. J.; Chow, T. J. J. Mater. Chem. 2011, 21, 9523.
8b
9b
MeCN, 0 °C, 2 h
+
+
6. For classical Kolbe nitrile synthesis, see: (a) Kim, D. W.; Song, C. E.; Chi, D. Y. J.
Org. Chem. 2003, 68, 4281–4285; (b) Friedrich, K.; Wallenfels, K. In The
Chemistry of the Cyano Group; Rappoport, Z., Ed.; Wiley: New York, 1970; (c)
Fatiadi, A. J. In Preparation and Synthetic Applications of Cyano Compounds; Patai,
S., Rappaport, S. Z., Eds.; Wiley: New York, 1983; For recent reviews and
examples, see: (d) Yang, C.; Williams, J. M. Org. Lett. 2004, 6, 2837; (e) Cristau,
H.-J.; Ouali, A.; Spindler, J.-F.; Taillefer, M. Chem. Eur. J. 2005, 11, 2483; (f)
Grossman, O.; Gelman, D. Org. Lett. 2006, 8, 1189; (g) Schareina, T.; Zapf, A.;
Maegerlein, W.; Müeller, N.; Beller, M. Chem. Eur. J. 2007, 13, 6249; (h) Chen, G.;
Weng, J.; Zheng, Z.; Zhu, X.; Cai, Y.; Cai, J.; Wan, Y. Eur. J. Org. Chem. 2008, 3524;
(i) Ren, Y.; Wang, W.; Zhao, S.; Tian, X.; Wang, J.; Yin, W.; Cheng, L. Tetrahedron
Lett. 2009, 50, 4595; (j) Ushkov, A. V.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133,
10999; (k) Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Org. Lett. 2011, 13, 5004;
N3
DIB (0.1 mmol)
TBHP (0.3 mmol)
O
(
42%
8p
10p
Scheme 5. Competitive experiment between 8b and 8p.
The above-mentioned phenomena led us to speculate that the
hypervalent iodine species may coordinate to the azide and may
react through a metal-like transition state.
9c,9f,14
A proposed mech-
(
l) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049; (m)
anistic pathway is shown in Scheme 3. The azide may be involved
in a weak interaction with the reactive species, bis(tert-butylper-
oxy)iodobenzene (3) to yield complex 14. Subsequent benzylic
proton abstraction accompanied by elimination of dinitrogen can
give imine intermediate 15. Finally, benzylic methine proton
abstraction followed by the collapse of complex 15 (R = H) affords
the aryl nitrile product 9.
We have also examined the oxidation of secondary azides 8m
and 8n. Under the standard conditions, ketones 10m and 10n were
obtained as the sole products (Scheme 4, Eq. 1). These
products might be produced through the hydrolysis of the imine
Yu, H.; Richey, R. N.; Miller, W. D.; Xu, J.; May, S. A. J. Org. Lett. 2010, 76, 665; (n)
Zhang, D.; Sun, H.; Zhang, L.; Zhou, Y.; Li, C.; Jiang, H.; Chen, K.; Liu, H. Chem.
Commun. 2012, 48, 2909.
For Reviews, see: (a) Hodgson, H. H. Chem. Rev. 1947, 40, 251; (b) Galli, C. Chem.
Rev. 1988, 88, 765; (c) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 1047, 94.
7.
8. (a) Yang, S. H.; Chang, S. Org. Lett. 2001, 3, 4209; (b) Ishihara, K.; Furuya, Y.;
Yamamoto, H. Angew. Chem., Int. Ed. 2002, 41, 2983; (c) Choi, E.; Lee, C.; Na, Y.;
Chang, S. Org. Lett. 2002, 4, 2369; (d) Yan, P.; Batamack, P.; Prakash, G. K. S.;
Olah, G. A. Catal. Lett. 2005, 101, 141; (e) Yamaguchi, K.; Fujiwara, H.;
Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew. Chem., Int. Ed. 2007, 46, 3922; (f)
Singh, M. K.; Lakshman, M. K. J. Org. Chem. 2009, 74, 3079; (g) Zhou, S.; Junge,
K.; Addis, D.; Das, S.; Beller, M. Org. Lett. 2009, 11, 2461; (h) Zhou, S.; Addis, D.;
Das, S.; Junge, K.; Beller, M. Chem. Commun. 2009, 4883; (i) Sueoka, S.;
Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Chem. Commun. 2010, 46,