3
b
Isolated yield
Supplementary Data
Supplementary data associated with this article can be found,
in the online version, at
Finally the optimised reactant ratio and condition showed that
aldehyde (1 mmol), sodium azide (2 mmol) , p-TsOH (3 mmol)
0
and silica gel mesh 60-120 (1g) at 120 C to be the best
combination to furnish maximum yield of the desired product
(
90%) in 3 h (entry 4, Table 3). No side product was obtained
References and notes
in our protocol. Since both sodium azide and p-toluenesulphonic
acid are soluble in water, product separation is much easier. For
the generalisation of our scheme, aldehyde 1-14 was successfully
converted to their corresponding nitriles under the optimised
reaction condition. Aldehydes such as heterocyclic aldehydes
1. (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B.
C. J. Med. Chem. 2010, 53, 7902–7917; (b) Sweeney, A. M.;
Grosche, P.; Ellis, D.; Combrink, K.;Erbel, P.; Hughes, N.;
Sirockin, F.; Melkko, S.; Bernardi, A.; Ramage, P.; Jarousse,N.;
Altmann, E. ACS Med. Chem. Lett. 2014, 5, 937–941; (c) Frizler,
M.; Lohr, F.;Furtmann, N.; Kläs, J.; Gutschow, M. J. Med. Chem.
2011, 54, 396–400; (d) Chuck,C.-P.; Chen, C.; Ke, Z.; Wan, D.
C.; Chow, H.-F.; Wong, K.-B. Eur. J. Med. Chem. 2013, 59, 1–6.
(
entry 12, table 3), aliphatic aldehydes
(entry 14, table 3),
aldehyde with napthyl moiety both 1 and 2 position (entry 10,11,
table 3) furnished good yield. Aromatic aldehyde having both
electron withdrawing (entry 4, table 3) and electron donating
group (entry 8, table 3) give good yield. But when same reaction
was carried out with acetophenone (entry 15, table 3) and its
derivative no nitrile was obtained. Therefore, it can be concluded
that the reaction is highly selective for aldehyde.
2
.
(a) Larock, R. C. Comprehensive Organic Transformations; VCH:
New York, 1989; p 819; (b) Houben-Weyl, C. Grundmann,
Methodender Organischen Chemie InIn Falbe, J., Ed.; Georg
Thieme Verlag: Stuttgart, 1985; E5, p 1313.
3.
(a) Munoz, J. M.; Alcazar, J.; Hoz, A.; Diaz-Ortiz, A.
Tetrahedron Lett. 2011, 52, 6058–6060;
4
.
(b) Caddick, S.; Haynes, A. K. K.; Judd, D. B.; Williams, M. R.
V. Tetrahedron Lett. 2000, 41, 3513–3516; (c) Heller, B.;
Sundermann, B.; Buschmann, H.; Drexler, H.-J.; You, J.;
Holzgrabe,U.; Heller, E.; Oehme, G. J. Org. Chem. 2002, 67,
Plausible mechanism for p-TsOH catalysed one pot synthesis
of nitrile from aldehyde was shown in scheme 3. At first p-TsOH
3 3
reacts with NaN and produces HN , then p-TsOH activate the
4
2
414–4422; (d) Bosch, L.; Vilarrasa, J. Angew. Chem., Int. Ed.
007, 46, 3926–3930; (e) Aureggi, V.; Sedelmeier, G. Angew.
carbonyl carbon, afterwards nucleophilic attack done by HN
3
.
Then expulsion of water molecule followed by N
desired product.
2
O
R
gives the
Chem., Int. Ed. 2007, 46, 8440–8444 (f) Aldhoun, M.; Massi, A.;
Dondoni, A. J. Org. Chem. 2008, 73, 9565–9575; (g) Bokach, N.
A.; Kuznetsov, M. L.; Haukka, M.; Ovcharenko, V. I.; Tretyakov,
E. V.; Kukushkin, V. Y. Organometallics 2009, 28, 1406–1413;
(
h) Cohen, M. A.; Sawden, J.; Turner, N. J. Tetrahedron Lett.
990, 31, 7223–7226
5. Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V.
O
O
S
1
H
C
S
O
H
HN3
+
H C
3
ONa
NaN3
+
3
O
O
J. Org. Chem. 2004, 689, 3810–3812.
Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779–
94.
6
.
7
H
7. Friedman, L.; Shechter, H. J. Org. Chem. 1960, 25, 877–879.
8. Bini, L.; Muller, C.; Wilting, J.; Chrzanowski, L.; Spek, A. L.;
Vogt, D. J. Am. Chem. Soc. 2007, 129, 12622–12623.
H
O
acid
O
H
N
N
N
N
R
N
H
N
R
H
R
H
9. Lindley, J. Tetrahedron. 1984, 40, 1433–1456.
1
0. (a) Rad, M. N. S.; Khalafi-Nezhad, A.; Behrouz, S.; Faghihi, M.
A. Tetrahedron Lett. 2007, 48,6779–6784; (b) Chen, F.-E.; Li, Y.-
Y.; Xu, M.; Jia, H.-Q. Synthesis. 2002, 1804–1806.
-
2
H O
p-TSA
HN3
1
1. (a) Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2003, 42,
1
480–1483; (b) Ghorbani-Vaghei, R.; Veisi, H. Synthesis. 2009,
945–950.
12. Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Org. Lett.
009, 11, 2461–2464.
13. (a) Lamani, M.; Prabhu, K. R. Angew. Chem. Int. Ed. 2010, 49,
-
N2
H
R
N
H
N
N
2
N
N
R
CHO
6
2
622–6625; (b) He, J.; Yamaguchi, K.; Mizuno, N. J. Org. Chem.
011, 76, 4606–4610.
1
4. (a) Shargi, H.; Sarvari, M. H. Synthesis 2003, 243–246; (b) Zhu,
J.-L.; Lee, F.-Y.; Wu, J.-D.; Kuo, C.-W.; Shia, K.-S. Synlett 2007,
Scheme 3. Plausible mechanism for the fomation of nitrile from aldehyde
1
317–1319; (c) Augustine, J. K.; Atta, R. N.; Ramappa, B. K.;
Boodappa, C. Synlett. 2009, 3378–3382 (d) Sridhar, M.; Reddy,
M. K. K.; Sairam, V. V.; Raveendra, J.; Godala, K. R.; Narsaiah,
C.; Ramanaiah, B. C.; Reddy, C. S. Tetrahedron Lett. 2012, 53,
3
421–3424; (e) Cos_kun, N.; Arikan, N. Tetrahedron. 1999, 55,
Conclusion
11943–11948; (f) Erman, M. B.; Snow, J. W.; Williams, M. J.
Tetrahedron Lett. 2000, 41, 6749–6752; (g) Carmeli, M.; Shefer,
N.; Rozen, S. Tetrahedron Lett. 2006, 47, 8969–8972; (h)
Telvekar, V. N.; Patel, K. N.; Kundaikar, H. S.; Chaudhari, H. K.
Tetrahedron Lett. 2008, 49, 2213–2215; (i) Sharghi, H.; Sarvari,
M. H. Tetrahedron. 2002, 58, 10323–10328; (j) Reddy, K. R.;
Maheswari, C. U.; Venkateshwar, M.; Prashanthi, S.; Kantam, M.
L. Tetrahedron Lett. 2009, 50, 2050–2053.
In conclusion, we have developed a solvent free and metal
catalyst free method to prepare nitrile from aldehyde, sodium
azide, p-TsOH in silica medium using the Schmidt reaction
protocol. Advantages of the protocol include cost efficiency, use
of no transition metal, no toxic cyanide, functional group
tolerance, environment friendly, simple work up process and no
side product.
15. Qin, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 15893–15895.
16. Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48,
7
094–7097.
7. Zhou, W.; Xu, J.; Zhang, L.; Jiao, N. Org. Lett. 2010, 12, 2888–
891.
1
2
1
1
8. Ghosh, P.; Subba, R. Tetrahedron Lett. 2013, 54, 4885–4887
9. Ghosh, P.; Saha, B, ; Pariyar C.G. ; Tamang, A, ; Subba, R.
Tetrahedron Lett. 2016, 57,3618–3621
Acknowledgments
One of the authors (BM) is thankful to CSIR, New Delhi, for
financial support.
2
2
0. Ghosh, P.; Pariyar, C.G.; Saha, B.; Subba, R. Synlett. 2016,
46,685-691
1. (a) Schmidt, K. F. Z. Angew. Chem. 1923, 36, 511. (b) Schmidt,
K. F. Chem. Ber. 1924, 57, 704. (c) Koldobskii, G. I.; Ostrovskii,
V. A.; Gidaspov, B. V. Russ. Chem. Rev. 1978, 47, 1084.