3
124
C. Zhu et al.
PAPER
NH4OAc
HOAc
OAc
OAc
Ph
I
O
NH3
H2O
OAc
Ph
R
C
H
N
I
R
C N
R
CH NH
–
– PhI
– HOAc
R
H
Scheme 2 A plausible reaction pathway
In conclusion, a simple and efficient method for the oxi- References
dation of aldehydes to the corresponding nitriles with
(
1) Friedrich, K.; Wallensfels, K. The Chemistry of the Cyano
Group; Rappoport, Z., Ed.; Wiley-Interscience: New York,
1970.
PhI(OAc) in the presence of catalytic amounts of SDS
2
using NH OAc as the nitrogen source has been developed.
4
A key feature of the oxidation protocol is its inherent sim-
plicity; there is no need for rigorous exclusion of air or
moisture to effect a clean oxidation and, in most cases, a
simple pass through a plug of silica is enough to obtain
highly pure products.
(2) Larock, R. C. Comprehensive Organic Transformations;
VCH: New York, 1989.
(
3) (a) Wang, E. C.; Lin, G. J. Tetrahedron Lett. 1998, 39, 4047.
b) Hegedüs, A.; Cwik, A.; Hell, Z.; Horváth, Z.; Esekc, A.;
(
Uzsokic, M. Green Chemistry 2002, 4, 618. (c) Dewan, S.
K.; Singh, R. Synth. Commun. 2003, 33, 3085. (d) Khan, T.
A.; Peruncheralathan, S.; Ila, H.; Junjappa, H. Synlett 2004,
2
019. (e) Lee, K.; Han, S. B.; Yoo, E. M.; Chung, S. R.; Oh,
All chemicals (AR grade) were obtained from commercial sources
and used without further purification. Poly{4-[bis(acetoxy)io-
do]}styrene (PBAIS) was prepared according to a literature proce-
H.; Hong, S. Synth. Commun. 2004, 34, 1775. (f) Li, D. G.;
Shi, F.; Guo, S.; Deng, Y. Q. Tetrahedron Lett. 2005, 46,
671. (g) Sarvari, M. H. Synthesis 2005, 787.
dure.1 Column chromatography was performed using Silicycle
9b
(
h) Movassagh, B.; Shokri, S. Synth. Commun. 2005, 35,
(
40–60 mm) silica gel.
887. (i) Movassagh, B.; Shokri, S. Tetrahedron Lett. 2005,
4
-bromobenzonitrile, 2-nitrobenzonitrile, 4-hydroxybenzonitrile, 2-
46, 6923. (j) Narsaiah, A. V.; Sreenu, D.; Nagalah, K. Synth.
furonitrile, octane nitrile and lauronitrile were identified with com-
mercially available authentic samples and determined by GC–MS.
Commun. 2006, 36, 137. (k) Supsana, P.; Liaskopoulos, T.;
Tsoungas, P. G.; Varvounis, G. Synlett 2007, 2671.
1
Other products were analyzed by H NMR and GC–MS.
(
l) Sardarian, A. R.; Shahsavari-Fard, Z.; Shahsavari, H. R.;
Ebrahimi, Z. Tetrahedron Lett. 2007, 48, 2639.
m) Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani,
M.; Mizuno, N. Angew. Chem. Int. Ed. 2007, 46, 3922.
n) Movassagh, B.; Fazell, A. Synth. Commun. 2007, 37,
23.
4) (a) Bose, D. S.; Narsaiah, A. V. Tetrahedron Lett. 1998, 39,
533. (b) Kumar, H. M. S.; Reddy, B. V. S.; Reddy, P. T.;
Oxidation of Aldehydes with PhI(OAc) /SDS/aq NH OAc; Typ-
2
4
(
ical Procedure
To a solution of aldehyde (1 mmol), aq NH OAc (3 mL, 30 mmol)
4
(
6
and SDS (60 mg, 0.2 mmol), was added PhI(OAc) (640 mg, 2
2
mmol). The mixture was stirred at 70 °C for several hours, while
checking the reaction progress by gas- or thin-layer chromatogra-
phy. After completion, aqueous sodium thiosulfate (50 mL) and
(
6
Yadav, J. S. Synthesis 1999, 586. (c) Das, B.; Ramesh, C.;
Madhusudhan, P. Synlett 2000, 1599. (d) Srinivas, K. V. N.
S.; Reddy, E. B.; Das, B. Synlett 2002, 625. (e) Sharghi, H.;
Sarvari, M. H. Tetrahedron 2002, 58, 10323. (f) Ballini, R.;
Fiorini, D.; Palmieri, A. Synlett 2003, 1841. (g)Sharghi,H.;
Sarvari, M. H. Synthesis 2003, 243. (h) Srinivas, K. V. N.
S.; Mahender, I.; Das, B. Chem. Lett. 2003, 32, 738.
Et O (20 mL) were sequentially added to the residue and the mix-
2
ture was stirred vigorously for 10 min. The organic layer was sepa-
rated, and the aqueous layer was extracted with Et O (3 × 10 mL).
2
The combined ether phase was concentrated under vacuum and the
crude product was purified by column chromatography (petroleum
ether–EtOAc, 10:1) to provide the analytically pure product.
(
i) Dewan, S. K.; Singh, R.; Kumar, A. Synth. Commun.
004, 34, 2025. (j) Niknam, K.; Karami, B.; Kiasat, A. R.
Oxidation of Aldehydes with PBAIS/SDS/aq NH OAc; Typical
Procedure
4
2
Bull. Korean Chem. Soc. 2005, 26, 975. (k) Eshghi, H.;
To a solution of aldehyde (1 mmol), aq NH OAc (3 mL, 30 mmol)
4
Gordi, Z. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180,
6
and SDS (60 mg, 0.2 mmol), was added PBAIS (1.0 g, 2 mmol).
The mixture was stirred at 70 °C for several hours, while checking
the reaction progress by gas- or thin-layer chromatography. After
19. (l) Zhu, J. L.; Lee, F. Y.; Wu, J. D.; Kuo, C. W.; Shia,
K. S. Synlett 2007, 1317. (m) Lee, J. C.; Yoon, J. M.; Baek,
J. W. Bull. Korean Chem. Soc. 2007, 28, 29. (n) Gaikwad,
D. D.; Renukdas, S. V.; Kendre, B. V.; Shisodia, S. U.;
Borade, R. M.; Shinde, P. S.; Chaudhary, S. S.; Pawar, R. P.
Synth. Commun. 2007, 37, 257. (o) Kivrak, A.; Zora, M.
J. Organomet. Chem. 2007, 692, 2346.
completion, Et O (30 mL) was added and the mixture was filtered
2
to remove the polymer. The organic extract from the filtrate was
dried and evaporated. The residue was purified by column chroma-
1
tography to give pure products, which were analyzed by H NMR
and GC/MS. Recovered polymer species poly(4-iodostyrene) was
reoxidized by peracetic acid (30% H O and Ac O) to give PBAIS
(
(
(
(
(
5) Brackman, W.; Smit, P. J. Recl. Trav. Chim. Pays-Bas 1963,
2
2
2
8
2, 757.
6) Parameswaram, K. N.; Friedman, O. M. Chem. Ind.
London) 1965, 988.
7) Misono, A.; Osa, T.; Koda, S. Bull. Chem. Soc. Jpn. 1966,
9, 854.
and reused.
(
Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synthesis.
3
8) Sato, R.; Itoh, Y.; Itep, K.; Nihina, H.; Goto, T.; Saito, M.
Chem. Lett. 1984, 13, 1913.
9) Erman, M. B.; Snow, J. W.; Williams, M. J. Tetrahedron
Lett. 2000, 41, 6749.
Acknowledgment
We are grateful to Nanjing University of Science and Technology
for financial support.
(
10) (a) Shie, J. J.; Fang, J. M. Tetrahedron Lett. 2001, 42, 1103.
(b) Shie, J. J.; Fang, J. M. J. Org. Chem. 2003, 68, 1158.
Synthesis 2010, No. 18, 3121–3125 © Thieme Stuttgart · New York