Paper
Journal of Materials Chemistry A
2
+
Cu ions with –SO
3
H groups on the surface of the SPS cores was 13 H. L. Liu, Y. L. Liu, Y. W. Li, Z. Y. Tang and H. F. Jiang, J.
the main active component of the SPS–Cu(II)@Cu (BTC) cata-
Phys. Chem. C, 2010, 114, 13362–13369.
3
2
lyst. The excess –SO H groups provided acid conditions to 14 S. E. Allen, R. R. Walvoord, R. P. Salinas and M. C. Kozlowski,
3
enhance the catalytic efficiency. The porous Cu (BTC)2 shell
Chem. Rev., 2013, 113, 6234–6458.
3
formed by the coordination between a portion of Cu(II) ions and 15 S. Pande, A. Saha, S. Jana, S. Sarkar, M. Basu, M. Pradhan,
H
3
BTC ligands acted as a protective layer to avoid the leaching
A. K. Sinha, S. Saha, A. Pal and T. Pal, Org. Lett., 2008, 10,
5179–5181.
16 E. T. T. Kumpulainen and A. M. P. Koskinen, Chem.–Eur. J.,
2009, 15, 10901–10911.
2
+
of active Cu ions and also provided uniform microchannels
for mass transfer. The active Cu(II) interface, the excess –SO
groups and the porous Cu (BTC) shell made the SPS–Cu(II)
3
H
3
2
@
Cu (BTC) composite an excellent catalyst with high efficiency 17 K. T. Mahmudov, M. N. Kopylovich, M. Silva, P. J. Figiel,
3 2
and reusability for the aerobic oxidation of alcohols to alde-
hydes under base-free conditions. The conversion of benzyl
Y. Y. Karabach and A. J. L. Pombeiro, J. Mol. Catal. A:
Chem., 2010, 318, 44–50.
alcohol was 100% with >99% benzaldehyde selectivity. The SPS– 18 P. Gamez, I. W. C. E. Arends, J. Reedijk and R. A. Sheldon,
Cu(II)@Cu (BTC) catalyst could be recycled ten times without a Chem. Commun., 2003, 2414–2415.
signicant loss in its activity and selectivity. Furthermore, a 19 P. J. Figiel, A. Sibaouih, J. U. Ahmad, M. Nieger,
3
2
novel SPS–Cu(II)@CuBDC catalyst with a laminated CuBDC
shell was also synthesized, and exhibited favorable catalytic
M. T. R ¨a is ¨a nen, M. Leskel ¨a and T. Repo, Adv. Synth. Catal.,
2009, 351, 2625–2632.
properties for the aerobic oxidation of alcohols as well as for the 20 Q. F. Wang, Y. Zhang, G. X. Zheng, Z. Z. Tian and G. Y. Yang,
catalytic reaction of the aerobic homocoupling of arylboronic Catal. Commun., 2011, 14, 92–95.
acids. Therefore the controllable design of the SPS–Cu(II)@MOF 21 Z. L. Lu, T. Ladrak, O. Roubeau, J. van der Toorn, S. J. Teat,
structure provides a general approach for the exploration of
highly efficient and stable heterogeneous catalysts for different
catalytic reaction systems.
C. Massera, P. Gamez and J. Reedijk, Dalton Trans., 2009,
3559–3570.
22 P. J. Figiel, A. M. Kirillov, M. F. C. Guedes da Silva, J. Lasri
and A. J. L. Pombeiro, Dalton Trans., 2010, 39, 9879–9888.
2
3 H. Chen, Q. H. Tang, Y. T. Chen, Y. B. Yan, C. M. Zhou,
Z. Guo, X. L. Jia and Y. H. Yang, Catal. Sci. Technol., 2013,
3, 328–338.
Acknowledgements
We would like to thank the National High Technology Research
and the Development Program of China (863 Program) (no. 24 H. Miyamura, R. Matsubara, Y. Miyazaki and S. Kobayashi,
2013AA031702) and the Co-building Special Project of Beijing
Angew. Chem., Int. Ed., 2007, 46, 4151–4154.
Municipal Education for their support.
25 N. F. Zheng and G. D. Stucky, Chem. Commun., 2007, 3862–
3864.
2
6 M. F. Semmelhack, C. R. Schmid, D. A. Cort ´e s and
C. S. Chou, J. Am. Chem. Soc., 1984, 106, 3374–3376.
Notes and references
1
2
3
R. H. Liu, X. M. Liang, C. Y. Dong and X. Q. Hu, J. Am. Chem. 27 A. Cecchetto, F. Fontana, F. Minisci and F. Recupero,
Soc., 2004, 126, 4112–4113.
Tetrahedron Lett., 2001, 42, 6651–6653.
R. F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou and 28 X. W. Zhang, G. Wang, M. Yang, Y. Luan, W. J. Dong,
F. S. Xiao, J. Mater. Chem. A, 2013, 1, 9037–9045.
S. J. Liu, N. Zhang, Z. R. Tang and Y. J. Xu, ACS Appl. Mater.
Interfaces, 2012, 4, 6378–6385.
M. B. Lauber and S. S. Stahl, ACS Catal., 2013, 3, 2612–2616.
M. Shibuya, Y. Osada, Y. Sasano, M. Tomizawa and
Y. Iwabuchi, J. Am. Chem. Soc., 2011, 133, 6497–6500.
K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed., 2002,
R. Dang, H. Y. Gao and J. Yu, Catal. Sci. Technol., 2014, 4,
3082–3089.
29 Y. H. Deng, Y. Cai, Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li,
C. Liu, Y. Wang and D. Y. Zhao, J. Am. Chem. Soc., 2010,
132, 8466–8473.
30 X. B. Huang, W. C. Guo, G. Wang, M. Yang, Q. Wang,
X. X. Zhang, Y. H. Feng, Z. Shi and C. G. Li, Mater. Chem.
Phys., 2012, 135, 985–990.
4
5
6
7
8
9
41, 4538–4542.
J. L. Long, X. Q. Xie, J. Xu, Q. Gu, L. M. Chen and X. X. Wang, 31 G. Grivani, S. Tangestaninejad, M. H. Habibi and
ACS Catal., 2012, 2, 622–631. V. Mirkhani, Catal. Commun., 2005, 6, 375–378.
A. Rahimi, A. Azarpira, H. Kim, J. Ralph and S. S. Stahl, J. Am. 32 G. Pozzi, M. Cavazzini, S. Quici, M. Benaglia and
Chem. Soc., 2013, 135, 6415–6418. G. Dell'Anna, Org. Lett., 2004, 6, 441–443.
C. Parmeggiani and F. Cardona, Green Chem., 2012, 14, 547– 33 M. Gilhespy, M. Lok and X. Baucherel, Chem. Commun.,
64.
2005, 1085–1086.
0 M. L. Kantam, R. S. Reddy, K. Srinivas, R. Chakravarti, 34 A. Dijksman, I. W. C. E. Arends and R. A. Sheldon, Chem.
5
1
B. Sreedhar, F. Figuera and C. V. Reddy, J. Mol. Catal. A:
Chem., 2012, 355, 96–101.
1 Y. H. Kim, S. K. Hwang, J. W. Kim and Y. S. Lee, Ind. Eng.
Chem. Res., 2014, 53, 12548–12552.
2 S. Venkatesan, A. S. Kumar, J. F. Lee, T. S. Chan and
J. M. Zen, Chem. Commun., 2009, 1912–1914.
Commun., 2000, 271–272.
35 Y. F. Zhang, X. G. Bo, A. Nsabimana, C. Han, M. Li and
L. P. Guo, J. Mater. Chem. A, 2015, 3, 732–738.
36 S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and
L. D. A Williams, Science, 1999, 283, 1148–1150.
1
1
This journal is © The Royal Society of Chemistry 2015
J. Mater. Chem. A