Communications
[9] For examples of the TH of a,b-unsaturated aldehydes, see: a) P.
Selvam, S. U. Sonavane, S. K. Mohapatra, R. V. Jayaram, Adv.
Synth. Catal. 2004, 346, 542 – 544; b) T. Mizugaki, Y. Kanayama,
K. Ebitani, K. Kaneda, J. Org. Chem. 1998, 63, 2378 – 2381, and
references therein.
[10] For a recent review including hydrogenation of aldehydes (as
well as a,b-unsaturated aldehydes), see: B. Chen, U. Dingerdis-
sen, J. G. E. Krauter, H. G. J. Lansink Rotgerink, K. Mꢁbus, D. J.
Ostgard, P. Panster, T. H. Riermeier, S. Seebald, T. Tacke, H.
Trauthwein, Appl. Catal. A 2005, 280, 17 – 46.
and environmentally friendly catalytic system for the reduc-
tion of aldehydes to date.
Experimental Section
[(Cp*IrCl2)2] (1.6 mg, 0.002 mmol) and Ts(en) (1.2 mg, 0.0048 mmol)
were suspended in degassed distilled water (15 mL). After the
[16]
reaction mixture had been stirred at 808Cfor 1 h,
HCOONa
(6.8 g, 0.1 mol) and benzaldehyde (2.1 g, 20 mmol) were added to the
resulting solution. The reaction mixture was rapidly degassed three
times through vacuum-nitrogen cycles and then heated at 808Cfor
0.6 h. The workup and analysis were conducted as previously
reported.[3a]
[11] For reviews, see: a) K. Nomura, J. Mol. Catal. A 1998, 130, 1 – 28;
b) F. Joó, ꢂ. Kathó, J. Mol. Catal. 1997, 116, 3 – 26.
[12] a) J. R. Miecznikowski, R. H. Crabtree, Organometallics 2004,
23, 629 – 631; b) J. W. Yang, M. T. Hechavarria Fonseca, N.
Viganola, B. List, Angew. Chem. 2004, 116, 6829 – 6832;
Angew. Chem. Int. Ed. 2004, 43, 6660 – 6662; c) A. N. Ajjou, J.-
L. Pinet, J. Mol. Catal. A 2004, 214, 203 – 206; d) S. Naskar, M.
Bhattacharjee, J. Organomet. Chem. 2005, 690, 5006 – 5010.
[13] R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 2001, 66,
7931 – 7944.
Representative of a TH reaction (S/Cratio of 5 10 4:1): An
aqueous solution of the catalyst Ir–CF3Ts(en) (0.001m, 1 mL) was
added to degassed distilled water (30 mL), and the mixture was
stirred at 808Cfor 10 min. HCOONa (17 g, 0.25 mol) and benzalde-
hyde (5.30 g, 50.0 mmol) were then introduced. A conversion of 98%
was achieved after 1 h, and following workup, phenylmethanol was
obtained as a colorless liquid (5.28 g, 98% yield).
[14] a) J. Carnivet, L. Karmazin-Brelot, G. Sꢀss-Fink, J. Organomet.
Chem. 2005, 690, 3209 – 3211; b) T. Abura, S. Ogo, Y. Watanabe,
S. Fukuzumi, J. Am. Chem. Soc. 2003, 125, 4149 – 4154.
[15] We thank one referee for suggesting these substrates.
[16] The iridium compound isolated is consistent with [Cp*IrClL]
(L = Ts(en) or CF3Ts(en) without the amido hydrogen atom)
with a structure probably similar to the related, structurally
characterized Ir–Ts(dpen) compound (dpen = 1,2-diphenylethy-
lenediamine).[17] Analytical data for the Ir–CF3Ts(en) catalyst:
1H NMR (400 MHz, CDCl3/TMS): d = 8.04 ppm (d, J = 8.1 Hz,
2H) 7.63 (d, J = 8.1 Hz, 2H), 4.07 (brs, 2H), 2.74 (2H, m), 2.66
(m, 2H), 1.75 (s, 15H). HRMS (ES) for C19H26ClF3IrN2O2S
([M+H]+): calcd: 631.0932 (Ir191Cl37) and 631.0985 (Ir193Cl35);
found: 631.0950; for C19H25F3IrN2O2S ([MÀCl]+): calcd:
Received: May 27, 2006
Published online: September 8, 2006
Keywords: aldehydes · chemoselectivity · iridium ·
.
transfer hydrogenation · water
[1] For recent reviews, see: a) K. H. Shaughnessy, Eur. J. Org. Chem.
2006, 1827 – 1835; b) C. J. Li, L. Chen, Chem. Soc. Rev. 2006, 35,
68 – 82; c) F. Joó, Acc. Chem. Res. 2002, 35, 738 – 745.
[2] S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb,
K. B. Sharpless, Angew. Chem. 2005, 117, 3339 – 3343; Angew.
Chem. Int. Ed. 2005, 44, 3275 – 3279.
595.1218 (Ir193
)
and 593.1195 (Ir191); found: 595.1190 and
593.1222. Elemental analysis: calcd for C19H25ClF3IrN2O2S: C
36.21, H 4.00, N 4.45; found: C36.40, H 4.12, N 4.31.
[17] K. Mashima, T. Abe, K. Tani, Chem. Lett. 1998, 1199-1200.
[3] a) X. F. Wu, X. G. Li, W. Hems, F. King, J. Xiao, Org. Biomol.
Chem. 2004, 2, 1818 – 8121; b) X. F. Wu, X. G. Li, F. King, J. Xiao,
Angew. Chem. 2005, 117, 3473 – 3477; Angew. Chem. Int. Ed.
2005, 44, 3407 – 3411; c) X. F. Wu, D. Vinci, T. Ikariya, J. Xiao,
Chem. Commun. 2005, 4447 – 4449, and references therein.
[4] For recent examples of the aqueous-phase TH of ketones, see:
a) C. Letondor, A. Pordea, N. Humbert, A. Ivanova, S. Mazurek,
M. Novic, T. R. Wards, J. Am. Chem. Soc. 2006, 128, 8320 – 8328;
b) Y. Xing, J. S. Chen, Z. R. Dong, Y. Y. Li, J. X. Gao,
Tetrahedron Lett. 2006, 47, 4501 – 4503; c) J. S. Wu, F. Wang,
Y. P. Ma, X. C. Cui, L. F. Cun, J. Zhu, J. G. Deng, B. L. Yu, Chem.
Commun. 2006, 1766 – 1768; d) J. Canivet, G. Labat, H. Stoeckli-
Evans, G. Sꢀss-Fink, Eur. J. Inorg. Chem. 2005, 4493 – 4500; e) A.
Schlatter, M. K. Kundu, W. D. Woggon, Angew. Chem. 2004, 116,
6899 – 6902; Angew. Chem. Int. Ed. 2004, 43, 6731 – 6734.
[5] For the aqueous-phase TH of aldehydes including a,b-unsatu-
rated aldehydes, see reference [1c] and the references cited
therein.
[6] For a recent review, see: K. Nishide, M. Node, Chirality 2002, 14,
759 – 767.
[7] For recent reviews, see: a) T. Ikariya, K. Murata, R. Noyori, Org.
Biomol. Chem. 2006, 4, 393 – 406; b) S. Gladiali, E. Alberico,
Chem. Soc. Rev. 2006, 35, 226 – 236; c) J. S. M. Samec, J.-E.
Backvall, P. G. Andersson, P. Brandt, Chem. Soc. Rev. 2006, 35,
237 – 248; d) S. E. Clapham, A. Hadzovic, R. H. Morris, Coord.
Chem. Rev. 2004, 248, 2201 – 2237; e) J. Blacker, J. Martin in
Asymmetric Catalysis on Industrial Scale: Challenges,
Approaches and Solutions (Eds.: H. U. Blaser, E. Schmidt),
Wiley-VCH, Weinheim, 2004, pp. 201 – 216.
[8] For recent examples of the TH of aldehydes, see: M. Kidwai, V.
Bansal, A. Saxena, R. Shankar, S. Mozumdar, Tetrahedron Lett.
2006, 47, 4161 – 4165, and references therein.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 6718 –6722