Communications to the Editor
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 1
9
(11) Klafki, H.-W.; Abramowski, D.; Swoboda, R.; Paganetti, P. A.;
Staufenfiel, M. The carboxyl termini of â-amyloid peptides 1-40
and 1-42 are generated by distinct γ-secretase activities. J . Biol.
Chem. 1996, 271, 28655-28659.
(12) Higaki, J .; Quon, D.; Zhong, Z.; Cordell, B. Inhibition of â-amyl-
oid formation identifies proteolytic precursors and subcellular
site of catabolism. Neuron 1995, 14, 651-659.
(13) Schenk, D. B.; Rydel, R. E.; May, P.; Little, S.; Panetta, J .;
Lieberburg, I.; Sinha, S. Therapeutic approaches related to
amyloid-â peptide and Alzheimer’s disease. J . Med. Chem. 1995,
38, 4141-4154.
(14) Brennan, M. Bringing back memories: Expanding understand-
ing of Alzheimer’s disease drives development of new drugs.
Chem. Eng. News 1997, J an. 20, 29-35.
(15) Evin, G.; Cappai, R.; Li, Q.-X.; Culvenor, J . G.; Small, D. H.;
Beyreuther, K.; Masters, C. L. Candidate γ-secretases in the
generation of the carboxyl terminus of the Alzheimer’s disease
âA4 amyloid: Possible involvement of cathepsin D. Biochemistry
1995, 34, 14185-14192.
(16) Ladror, U. S.; Snyder, S. W.; Wang, G. T.; Holzman, T. F.; Krafft,
G. A. Cleavage at the amino and carboxyl termini of Alzheimer’s
amyloid-â by cathepsin D. J . Biol. Chem. 1994, 269, 18422-
18428.
(17) Saftig, P.; Peters, C.; von Figura, K.; Craessaerts, K.; Van
Leuven, F.; De Strooper, B. Amyloidogenic processing of human
amyloid precursor protein in hippocampal neurons devoid of
cathepsin D. J . Biol. Chem. 1996, 271, 27241-27244.
(18) Thaisrivongs, S.; Pals, D. T.; Kati, W. M.; Turner, S. R.;
Thomasco, L. M.; Watt, W. Design and synthesis of potent and
specific renin inhibitors containing difluorostatine, difluorosta-
tone, and related analogues. J . Med. Chem. 1986, 29, 2080-
2087.
(19) Dreyer, G. B.; Metcalf, B. W.; Tomaszek, T. A., J r.; Carr, T. J .;
Chandler, A. C., III; Hyland, L.; Fakhoury, S. A.; Magaard, V.
W.; Moore, M. L.; Strickler, J . E.; Debouck, C.; Meek, T. D.
Inhibition of human immunodefiency virus 1 protease in vitro:
Rational design of substrate analogue inhibitors. Proc. Natl.
Acad. Sci. U.S.A. 1989, 86, 9752-9756.
(20) Parisi, M. F.; Abeles, R. H. Inhibition of chymotrypsin by
fluorinated R-keto acid derivatives. Biochemistry 1992, 31,
9429-9435.
(21) Takahashi, L. H.; Radhakrishnan, R.; Rosenfield, R. E., J r.;
Meyer, E. F., J r.; Trainor, D. A. Crystal structure of the covalent
complex formed by a peptidyl R,R-difluoro-â-keto amide with
porcine pancreatic elastase at 1.78-Å resolution. J . Am. Chem.
Soc. 1989, 111, 3368-3374.
(22) Angliker, H.; Anagli, J .; Shaw, E. Inactivation of calpain by
peptidyl fluoromethyl ketones. J . Med. Chem. 1992, 35, 216-
220.
(23) Hamada, Y.; Shioiri, T. New methods and reagents in organic
synthesis. 29. A practical method for the preparation of optically
active N-protected R-amino aldehydes and peptide aldehydes.
Chem. Pharm. Bull. 1982, 30, 1921-1924.
(24) Ireland, R. E.; Liu, L. An improved procedure for the preparation
of the Dess-Martin periodinane. J . Org. Chem. 1993, 58, 2899.
(25) Linderman, R. J .; Graves, D. M. An efficient procedure for the
oxidation of fluorinated carbinols. Tetrahedron Lett. 1987, 28,
4259-4262.
(26) Citron, M.; Oltersdorf, T.; Haass, C.; McConlogue, K.; Hung, A.
Y.; Suebert, P.; Vigo- Pelfrey, C.; Lieberburg, I.; Selkoe, D. J .
Mutation of the â-amyloid precursor protein in familial Alzhe-
imer’s disease increases â-protein production. Nature 1992, 360,
672-674.
teases: all are peptide aldehydes, and all are calpain
inhibitors.10-12 Identifying other types of inhibitors is
critical for creating molecular probes for studying these
proteases and for generating drug leads. We have
demonstrated that a substrate-based difluoro ketone is
a specific inhibitor of Aâ biosynthesis in APP-transfected
cells. While this inhibition occurs at the γ-secretase
level, it is unclear whether this compound and the
reported peptide aldehydes interact directly with γ-secre-
tases. Clarification of this issue will have to await the
development of a purified enzyme assay. These results
again support the existence of pharmacologically dis-
tinct γ-secretases cleaving at amino acids 40 and 42;
thus far, selective inhibitors of γ(40)-secretase activity
have been easier to identify. Currently, we are modify-
ing prototype 1 in various ways to determine structural
requirements for activity, to reverse the selectivity in
favor of Aâ42 reduction, and to create new molecular
tools for AD research.
Ack n ow led gm en t. We thank Drs. Steven W. White
and Charles R. Ross, II, at St. J ude Childrens’ Research
Hospital for the crystallographic analysis of 5. This work
was supported by a Faculty Development Grant from
the University of Tennessee College of Pharmacy
(M.S.W.) and by NIH Grant AG 12749 (D.J .S.).
Su p p or tin g In for m a tion Ava ila ble: Synthetic proce-
dures and characterization for all compounds as well as
crystallographic data on 5 (11 pages). Ordering information
is given on any current masthead page.
Refer en ces
(1) Glenner, G. G.; Wong, C. W. Alzheimer’s disease: Initial report
of the purification and characterization of a novel cerebrovas-
cular amyloid protein. Biochem. Biophys. Res. Commun. 1984,
120, 885-890.
(2) Kang, J .; Lemaire, H.; Unterbeck, A.; Salbaum, J . M.; Masters,
C. L.; Grzeschik, K. H.; Multhaup, G.; Beyreuther, K.; Muller-
Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein
resembles a cell-surface receptor. Nature 1987, 325, 733-736.
(3) Hardy, J . The Alzheimer family of diseases: Many etiologies,
one pathogenesis? Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2095-
2097.
(4) Selkoe, D. J . Alzheimer’s disease: Genotypes, phenotype, and
treatments. Science 1997, 275, 630-631.
(5) Lamb, B. T. Presenilins, amyloid-â and Alzheimer’s disease.
Nature Med. 1997, 3, 28-29.
(6) Roher, A. E.; Lowenson, J . D.; Clarke, S.; Wolkow, C.; Wang,
R.; Cotter, R. J .; Reardon, I.; Zurcher-Neely, H. A.; Heinrikson,
R. L.; Ball, M. J .; Greenberg, B. D. Structural alterations in the
peptide backbone of â-amyloid core protein may account for its
deposition and stability in Alzheimer’s disease. J . Biol. Chem.
1993, 268, 3072-3083.
(7) Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.;
Ihara, Y. Visualization of Aâ42(43) and Aâ40 in senile plaques
with end-specific monoclonals: Evidence that an initially de-
posited species is Aâ42(43). Neuron 1994, 13, 45-52.
(8) Selkoe, D. J . Cell biology of the amyloid â-protein precursor and
the mechanism of Alzheimer’s disease. Annu. Rev. Cell Biol.
1994, 10, 373-403.
(9) Roberts, S. B.; Ripellino, J . A.; Ingalis, K. M.; Robakis, N. K.;
Felsenstein, K. M. Non-amyloidogenic cleavage of the â-amyloid
precursor protein by an integral membrane metalloendopepti-
dase. J . Biol. Chem. 1994, 269, 3111-3116.
(10) Citron, M.; Diehl, T.; Gordon, G.; Biere, A. L.; Seubert, P.; Selkoe,
D. J . Evidence that the 42- and 40-amino acid forms of amyloid
â protein are generated from the â-amyloid precursor protein
by different protease activities. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 13170-13175.
(27) J ohnson-Wood, K.; Lee, M.; Motter, R.; Hu, K.; Gordon, G.;
Barbour, R.; Khan, K.; Gordon, M.; Tan, H.; Games, D.; Lieber-
burg, I.; Schenk, D.; Seubert, P.; McConlogue, L. Amyloid
42 deposition in a transgenic
mouse model Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A.
1997, 94, 1550-1555.
precursor protein processing and Aâ
(28) Buroker-Kilgore, M.; Wang, K. K. W. A Coomassie Brilliant Blue
G-250-based colorometric assay for measuring activity of calpain
and other proteases. Anal. Biochem. 1993, 208, 387-392.
(29) Hamada, Y.; Shibata, M.; Sugiura, T.; Kato, S.; Shioiri, T. New
methods and reagents in organic synthesis. 67. A general
synthesis of derivatives of optically pure 2-(1-aminoalkyl)-
thiazole-4-carboxylic acids. J . Org. Chem. 1987, 52, 1252-1255.
J M970621B