4
Tetrahedron
(
6 equiv of active O) several times, until conversion of 6 to 7
Government of Russia for support of our cooperative research
program (Russian Science Foundation No. 14-43-
00005) and the Ministry of Education and Science of Russian
Federation (project "Science" No. 4.2569.2014/K).
falls below 100% and this value stays unchanged (Table 3).
These data in principle allow us to compare stability of the
catalyst toward oxidative degradation in the presence of different
oxidants under reaction conditions.
References and notes
Table 3. Oxygenation cycles in the reactions of 2-tert-
butylanthracene 6 with different oxidants in the presence of
1
.
Representatives books and reviews: (a) Cytochrome P450:
Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P.
R., Ed.; Kluwer Academic/Plenum Publishers: New York, 2005;
(b) Metalloporphyrins in Catalytic Oxidations; Sheldon, R. A.,
Ed.; M. Dekker: New York, 1994; (c) Meunier, B. Chem. Rev.
1992, 92, 1411-1456; (d) Simonneaux, G.; Tagliatesta, P. J.
Porphyrins Phthalocyanines 2004, 8, 1166-1171; (e) Rose, E.;
Andrioletti, B.; Zrig, S.; Quelquejeu-Etheve, M. Chem. Soc. Rev.
a
fixed quantity of catalyst 1 (0.5 mol%).
Entry Oxidant
Cycle
Time (min)
Conversion
of 6 to 7
st
1 addition
1
2
3
4
5
6
7
8
9
1
(PhIO)
(PhIO)
(PhIO)
(PhIO)
(PhIO)
(PhIO)
(PhIO)
(PhIO)
Oxone
Oxone
Oxone
3
3
3
3
3
3
3
3
SO
3
SO
3
SO
3
SO
3
SO
3
SO
3
SO
3
SO
3
5
100
100
100
100
100
100
100
99
nd
2
3
4
5
6
7
8
1
2
3
addition
addition
addition
addition
addition
addition
addition
addition
addition
addition
5
2
005, 34, 573-583; (f) Bernadou, J.; Meunier, B. Adv. Synth.
rd
th
th
th
th
th
st
10
20
20
40
90
240
5
Catal. 2004, 346, 171-184; (g) Vinhado, F. S.; Martins, P. R.;
Iamamoto, Y. Curr. Top. Catal. 2002, 3, 199-213; (h) Meunier,
B.; Robert, A.; Pratviel, G.; Bernadou, J. Porphyrin Handbook
2000, 4, 119-187; (i) Groves, J. T.; Shalyaev, K.; Lee, J.
Porphyrin Handbook 2000, 4, 17-40; (j) Ji, L.; Peng, X.; Huang, J.
Progress in Natural Science 2002, 12, 321-330; (k) Groves, J. T.
J. Porphyrins Phthalocyanines 2000, 4, 350-352; (l) Kimura, M.;
Shirai, H. Porphyrin Handb. 2003, 19, 151-177; (m) Nemykin, V.
N.; Lukyanets, E. A. Handbook of Porphyrin Science, 2010, 3, 1-
323; (n) Nemykin, V. N.; Lukyanets, E. A. J. Porph.
Phthalocyan., 2010, 14, 1-40; (o) Nemykin, V. N.; Lukyanets, E.
A. ARKIVOC, 2010, (i), 136-208.
100
100
75
2
.
(a) Zalomaeva, O. V.; Kholdeeva, O. A.; Sorokin, A. B. C. R.
Chim. 2007, 10, 598-603; (b) Kholdeeva, O. A.; Zalomaeva, O.
V.; Sorokin, A. B.; Ivanchikova, I. D.; Della Pina, C.; Rossi, M.
Catal. Today 2007, 121, 58-64; (c) Sorokin, A. B.; Mangematin,
S.; Pergrale, C. J. Mol. Catal. A: Chem. 2002, 182-183, 267-281;
nd
rd
0
1
30
1440
1
a
Reactions were performed in acetonitrile-water (1:1) at room temperature
using the same initial quantity of catalyst 1 (0.5 mol%) and adding 1 equiv of
substrate 6 and excessive oxidant (6 equiv of active O) several times, until
conversion of 6 to 7 falls below 100%.
(
d) Kudrik, E. V.; Sorokin, A. B. Chem. Eur. J. 2008, 14, 7123-
126; (e) Sorokin, A. B.; Kudrik, E. V.; Bouchu, D. Chem.
7
Commun. 2008, 2562-2564; (f) Kudrik, E. V.; Afanasiev, P.;
Bouchu, D.; Millet, J.-M. M.; Sorokin, A. B. J. Porphyrins
Phthalocyanines 2008, 12, 1078-1089. (g) Sorokin, A. B. Chem.
Rev. 2013, 113, 8152-8191.
These data (Table 3) demonstrate that iron(III)
octakis(perfluorophenyl)tetraazaporphyrin µ-oxodimer 1 (0.5
mol%) can work highly efficiently up to 8 cycles in the oxidizing
system 2-tert-butylanthracene 6 - oligomeric iodosylbenzene
sulfate in acetonitrile-water (1:1) solvent system (entry 8). Oxone
is a less efficient oxidant affording after the third addition only
3
4
.
.
Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. Tetrahedron
2
(a) Geraskin, I. M.; Luedtke, M. W.; Neu, H. M.; Nemykin, V. N.;
Zhdankin, V. V. Tetrahedron Lett. 2008, 49, 7410-7412; (b)
Geraskin, I. M.; Pavlova, O.; Neu, H. M.; Yusubov, M. S.;
Nemykin, V. N.; Zhdankin, V. V. Adv. Synth. Catal. 2009, 351,
010, 66, 5745-5752.
7
5% conversion in 24 hours (entry 11). This experiment clearly
7
33-737; (c) Neu, H. M.; Yusubov, M. S.; Zhdankin, V. V.;
indicates that oligomeric iodosylbenzene sulfate is at least twice
more efficient oxidant than Oxone, and has a substantial
advantage over Oxonein this oxidizing system.
Nemykin, V. N. Adv. Synth. Catal. 2009, 351, 3168-3174; (d)
Yoshimura, A.; Neu, H. M.; Nemykin, V. N.; Zhdankin, V. V.
Adv. Synth. Catal. 2010, 352, 1455-1460.
5
6
.
.
(a) Nemykin, V. N.; Koposov, A. Y.; Netzel, B. C.; Yusubov, M.
S.; Zhdankin, V. V. Inorg. Chem. 2009, 48, 4908-4917; (b)
Koposov, A. Y.; Netzel, B. C.; Yusubov, M. S.; Nemykin, V. N.;
Nazarenko, A. Y.; Zhdankin, V. V. Eur. J. Org. Chem. 2007,
In conclusion, we have reported the preparation and catalytic
activity
octakis(perfluorophenyl)tetraazaporphyrin µ-oxodimer complex
, which is the first example of a fully fluorinated transition-
of
binuclear
iron(III)
4
475-4478.
Neu, H. M.; Zhdankin, V. V.; Nemykin, V. N. Tetrahedron Lett.
010, 51, 6545-6548.
1
metal tetraazaporphyrin complex possessing an exceptional
resistance to oxidative degradation. Complex 1 is a highly
efficient catalyst for biomimetic oxidations of hydrocarbons
using iodosylbenzene or Oxone as stoichiometric oxidants.
2
Supplementary Material
Supplementary material (experimental procedures and UV-vis
and MCD spectra for complex 1) associated with this article can
be found, in the online version, at doi: .
Acknowledgments
This work was supported by research grants from the National
Science Foundation (CHE-1262479). We are also thankful to the