Organometallics
Article
(4) (a) Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E.
A. Catalytic (de)hydrogenation promoted by non-precious metals -
Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
̈
2018, 47, 1459−1483. (b) Gorgas, N.; Stoger, B.; Veiros, L. F.;
Kirchner, K. Highly Efficient and Selective Hydrogenation of
Aldehydes: A Well-Defined Fe(II) Catalyst Exhibits Noble-Metal
Activity. ACS Catal. 2016, 6, 2664−2672. (c) Zell, T.; Ben-David, Y.;
Milstein, D. Highly efficient, general hydrogenation of aldehydes
catalyzed by PNP iron pincer complexes. Catal. Sci. Technol. 2015, 5,
822−826. (d) Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.;
Spannenberg, A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M.
Selective Catalytic Hydrogenations of Nitriles, Ketones, and
Aldehydes by Well-Defined Manganese Pincer Complexes. J. Am.
Chem. Soc. 2016, 138, 8809−8814. (e) Fleischer, S.; Zhou, S.; Junge,
K.; Beller, M. General and Highly Efficient Iron-Catalyzed Hydro-
genation of Aldehydes, Ketones, and α,β-Unsaturated Aldehydes.
Experimental details and spectra (PDF)
Accession Codes
CCDC 1854352 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
̈
Angew. Chem., Int. Ed. 2013, 52, 5120−5124. (f) Rosler, S.; Obenauf,
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
■
J.; Kempe, R. A Highly Active and Easily Accessible Cobalt Catalyst
for Selective Hydrogenation of CO Bonds. J. Am. Chem. Soc. 2015,
137, 7998−8001. (g) Kallmeier, F.; Irrgang, T.; Dietel, T.; Kempe, R.
Highly Active and Selective Manganese C = O Bond Hydrogenation
Catalysts: The Importance of the Multidentate Ligand, the Ancillary
Ligands, and the Oxidation State. Angew. Chem., Int. Ed. 2016, 55,
11806−11809. (h) Spasyuk, D.; Vicent, C.; Gusev, D. G. Chemo-
selective Hydrogenation of Carbonyl Compounds and Acceptorless
Dehydrogenative Coupling of Alcohols. J. Am. Chem. Soc. 2015, 137,
3743−3746. (i) Baldino, S.; Facchetti, S.; Zanotti-Gerosa, A.;
Nedden, H. G.; Baratta, W. Transfer Hydrogenation and Hydro-
genation of Commercial-Grade Aldehydes to Primary Alcohols
Catalyzed by 2-(Aminomethyl)pyridine and Pincer Benzo[h]-
quinoline Ruthenium Complexes. ChemCatChem 2016, 8, 2279−
2288.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from DST-SERB (Grant No. EMR/2016/
003002) and IISER Bhopal and fellowships from IISER Bhopal
(to S.G.) and UGC (to B.M. and S.S.) are gratefully
acknowledged.
(5) Smith, M. B.; March, J. Advanced Organic Chemistry, 5th ed.;
Wiley Interscience: New York, 2001.
REFERENCES
̈
(6) (a) Glatz, M.; Stoger, B.; Himmelbauer, D.; Veiros, L. F.;
■
Kirchner, K. Chemoselective Hydrogenation of Aldehydes under
Mild, Base-Free Conditions: Manganese Outperforms Rhenium. ACS
Catal. 2018, 8, 4009−4016. (b) Christie, F.; Zanotti-Gerosa, A.;
Grainger, D. Hydrogenation and Reductive Amination of Aldehydes
using Triphos Ruthenium Catalysts. ChemCatChem 2018, 10, 1012−
1018. (c) Cano, I.; Martínez-Prieto, L. M.; Vendier, L.; van Leeuwen,
P. W. N. M. An iridium−SPO complex as bifunctional catalyst for the
highly selective hydrogenation of aldehydes. Catal. Sci. Technol. 2018,
8, 221−228. (d) Tan, X.; Wang, G.; Zhu, Z.; Ren, C.; Zhou, J.; Lv, H.;
Zhang, X.; Chung, L. W.; Zhang, L.; Zhang, X. Hydrogenation of
Aldehydes Catalyzed by an Available Ruthenium Complex. Org. Lett.
2016, 18, 1518−1521.
(1) (a) Abdel-Magid, A. F., Ed. Reductions in Organic Synthesis.
Recent Advances and Practical Applications, ACS Symposium Series;
American Chemical Society: Washington, D.C., 1998. (b) Hudlicky,
M., Ed. Reductions in Organic Chemistry; John Wiley & Sons, Ltd.:
Chichester, U.K., 1984.
(2) (a) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides
in Organic Synthesis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 1997.
(b) Magano, J.; Dunetz, J. R. Large-Scale Carbonyl Reductions in the
Pharmaceutical Industry. Org. Process Res. Dev. 2012, 16, 1156−1184.
(c) Brown, H. C.; Krishnamurthy, S. Forty years of hydride
reductions. Tetrahedron 1979, 35, 567−607. (d) de Souza, M. V.
N.; Vasconcelos, T. R. A. Recent methodologies mediated by sodium
borohydride in the reduction of different classes of compounds. Appl.
Organomet. Chem. 2006, 20, 798−810. (e) Burkhardt, E. R.; Matos, K.
Boron Reagents in Process Chemistry: Excellent Tools for Selective
Reductions. Chem. Rev. 2006, 106, 2617−2650. (f) Kuroiwa, Y.;
Matsumura, S.; Toshima, K. Chemoselective Reduction of Aldehydes
over Ketones with Sodium Tris(hexafluoroisopropoxy)borohydride.
Synlett 2008, 2008, 2523−2525. (g) Krishnamurthy, S. Lithium tris(3-
ethyl-3-pentyloxy)aluminohydride. A new remarkably chemoselective
reagent for the reduction of aldehydes in the presence of ketones. J.
Org. Chem. 1981, 46, 4628−4629. (h) Fung, N. Y. M.; de Mayo, P.;
Schauble, J. H.; Weedon, A. C. Reduction by tributyltin hydride of
carbonyl compounds adsorbed on silica gel: selective reduction of
aldehydes. J. Org. Chem. 1978, 43, 3977−3979.
(3) (a) Freifelder, M. Catalytic Hydrogenation in Organic Synthesis
Procedures and Commentary; Wiley: New York, 1978. (b) de Vries, J.
G., Elsevier, C. J., Eds. Handbook of Homogeneous Hydrogenation;
Wiley-VCH: Weinheim, Germany, 2007. (c) Nishimura, S. Handbook
of Heterogeneous Catalytic Hydrogenation for Organic Synthesis; Wiley:
New York, 2001. (d) Wu, X.; Xiao, J. Comprehensive Organic Synthesis,
2nd ed.; Elsevier: Amsterdam, 2014; Vol. 8, pp 198−273. (e) Dupau,
P.. In Organometallics as Catalysts in the Fine Chemical Industry; Beller,
M., Blaser, H. U., Eds.; Springer-Verlag: Berlin, 2012.
̈
(7) (a) Wienhofer, G.; Westerhaus, F. A.; Junge, K.; Ludwig, R.;
Beller, M. A Molecularly Defined Iron-Catalyst for the Selective
Hydrogenation of α,β-Unsaturated Aldehydes. Chem. - Eur. J. 2013,
19, 7701−7707. (b) Miyada, T.; HuangKwan, E.; Yamashita, M.
Synthesis, Structure, and Bonding Properties of Ruthenium
Complexes Possessing a Boron-Based PBP Pincer Ligand and Their
Application for Catalytic Hydrogenation. Organometallics 2014, 33,
6760−6770. (c) Mazza, S.; Scopelliti, R.; Hu, X. Chemoselective
Hydrogenation and Transfer Hydrogenation of Aldehydes Catalyzed
by Iron(II) PONOP Pincer Complexes. Organometallics 2015, 34,
1538−1545. (d) Bonomo, L.; Kermorvan, L.; Dupau, P. Ruthenium-
Catalyzed Highly Chemoselective Hydrogenation of Aldehydes.
ChemCatChem 2015, 7, 907−910. (e) Diab, L.; Smejkal, T.; Geier,
J.; Breit, B. Supramolecular Catalyst for Aldehyde Hydrogenation and
Tandem Hydroformylation−Hydrogenation. Angew. Chem., Int. Ed.
2009, 48, 8022−8026.
(8) Manas, M. G.; Graeupner, J.; Allen, L. J.; Dobereiner, G. E.;
Rippy, K. C.; Hazari, N.; Crabtree, R. H. Hydrogenation of
Quinaldine and Benzylic Aldehydes both Separately and Combined
in a Tandem Hydrogenation−Reductive Alkylation of Quinaldine by
Aldehydes with Iridium Benzoquinoline Catalysts. Organometallics
2013, 32, 4501−4506.
E
Organometallics XXXX, XXX, XXX−XXX