Page 5 of 7
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
benzamide (entry 4). This may be due to steric limitation at the
carbonyl moiety created by the larger phenyl substituent. In
this case, substituting TBD for a smaller co-catalyst provided a
modest increase in TON. These results suggest the co-catalytic
effect of TBD and related shuttles may be effective with more
diverse amides. Admittedly, the enhancement observed with
1
2
3
4
5
6
1156–1184.
G. Zhang and S. K. Hanson, Chem. Commun., 2013, 49,
10151–10153.
G. Zhang, B. L. Scott and S. K. Hanson, Angew. Chem. Int. Ed.,
2012, 51, 12102–12106.
A. M. Smith and R. Whyman, Chem. Rev., 2014, 114, 5477–
5510.
U. Jayarathne, Y. Zhang, N. Hazari and W. H. Bernskoetter,
Organometallics, 2017, 36, 409–416.
G. Arthur, The Amide Linkage: Selected Structural Aspects in
Chemistry, Biochemistry, and Materials Science., Wiley-
Interscience, Hoboken, 1st edn., 2000.
S. Kar, A. Goeppert, J. Kothandaraman and G. K. S. Prakash,
ACS Catal., 2017, 7, 6347–6351.
DOI: 10.1039/C9SC03812D
diphenylformanilide was initially unexpected because
a
mechanism involving the iron-catalyst instead of formanilide,
was previously proposed for the hemiaminal C–N bond cleavage
using aryl amide substrates.13 However, the calculated G‡
HT
using the diphenylformanilide hemianimal intermediate and
TBD is lower (G‡ = 21.8 kcal mol-1) than the barrier for the iron-
assisted mechanism (G‡ = 28.6 kcal mol-1, see Fig. 2). This
result is in agreement with the enhanced reactivity observed for
the hydrogenation of diphenylformanilide using TBD as co-
7
catalyst (see Fig. 2).
8
9
D. G. Gusev, ACS Catal., 2017, 7, 6656–6662.
E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon and D.
Milstein, J. Am. Chem. Soc., 2010, 132, 16756–16758.
J. M. John and S. H. Bergens, Angew. Chem. Int. Ed., 2011,
50, 10377–10380.
M. Beller, W. Baumann, E. Alberico, H.-J. J. Drexler, J. R.
Cabrero-Antonino, H. Junge, K. Junge, E. Alberico, H.-J. J.
Drexler, W. Baumann, K. Junge, H. Junge and M. Beller, ACS
Catal., 2016, 6, 47–54.
J. A. Garg, S. Chakraborty, Y. Ben-David and D. Milstein,
Chem. Commun., 2016, 52, 5285–5288.
L. Artús Suàrez, Z. Culakova, D. Balcells, W. H. Bernskoetter,
O. Eisenstein, K. I. K. I. Goldberg, N. Hazari, M. Tilset and A.
Nova, ACS Catal., 2018, 8, 8751–8762.
H
N
H
O
Ph
Ph
N
H
N
N
H
O
H
N
PiPr2
10
11
N
Fe CO
PiPr2
H
Ph
Ph
H H
28.6 kcal mol-1
21.8 kcal mol-1
Fig. 2 Gibbs energies associated with the C–N bond cleavage TSs for diphenylformamide
assisted by FeN and the TBD co-catalyst.
12
13
Conclusions
In conclusion, this work establishes the basis for co-catalyst
optimization in amide deaminative hydrogenation reactions using
Noyori-type catalysts. Key factors in the co-catalyst design include a
push-pull motif of hydrogen bonding sites to assist the C–N bond
cleavage of the hemiaminal and controlled acidity and steric
hindrance to prevent catalyst poisoning. Notably, these design
principles yielded co-catalysts enhancing the activity of systems
based on different transition metals. The generality of the co-catalyst
effect and its mechanistic understanding provide new opportunities
for the catalytic hydrogenation of challenging electron-rich carbonyl
compounds.
14
15
16
17
18
19
20
21
P. A. Dub and J. C. Gordon, Nat. Rev. Chem., 2018, 2, 396–
408.
L. Alig, M. Fritz and S. Schneider, Chem. Rev., 2018, 119,
2681–2751.
S. Kar, J. Kothandaraman, A. Goeppert and G. K. S. Prakash,
J. CO2 Util., 2018, 23, 212–218.
C. Tang, K. Sordakis, H. Junge, M. Beller, L. K. Vogt, G.
Laurenczy and P. J. Dyson, Chem. Rev., 2017, 118, 372–433.
A. Wakatsuki, Y. Kabe, M. Matsumoto, N. Watanabe and H.
K. Ijuin, Tetrahedron Lett., 2018, 59, 971–977.
B. Yuan, R. He, W. Shen, Y. Xu, X. Liu and M. Li,
ChemistrySelect, 2016, 1, 2971–2978.
The microkinetic model was performed using COPASI 4.22
software.
S. Hoops, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L.
Xu, P. Mendes and U. Kummer, Bioinformatics, 2006, 22,
3067–3074.
M. Besora and F. Maseras, Wiley Interdiscip. Rev. Comput.
Mol. Sci., 2018, 1372, 1–13.
Microkinetic models show that 4-formylmorpholine reacts
in a similar manner than DMF (see ESI).
C. Bornschein, K. P. J. Gustafson, O. Verho, M. Beller and J.
E. Bäckvall, Chem. - A Eur. J., 2016, 22, 11583–11586.
R. Adam, E. Alberico, W. Baumann, H. J. Drexler, R. Jackstell,
H. Junge and M. Beller, Chem. - A Eur. J., 2016, 22, 4991–
5002.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
22
23
24
25
Ll.A., D.B. and A.N. thank the support from the Research Council
of Norway (FRINATEK Grant No. 250044 and Center of
Excellence Grand No. 262695), the Norwegian Metacenter for
Computational Science (NOTUR, nn4654k) and NordForsk,
(Grand No. 85378). U.J., W.B. and N.H. acknowledge support
from the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Catalysis Science Program (DE-SC0018222).
26
N. M. Rezayee, C. A. Huff and M. S. Sanford, J. Am. Chem.
Soc., 2015, 137, 1028–1031.
Notes and references
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins