ACS Catalysis
Letter
complex between benzylamine and TiO2 has very weak
featureless absorption in the visible region.26 Consequently,
the Au/rutile TiO2-photocatalyzed amine oxidation is mainly
induced not by the surface complex excitation but probably by
the LSPR-excited electron transfer.
(Figure S2), amine oxidation (Table S2), and PCP curves
(Figure S3). This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
The effect of Au NP loading on the adsorption property of
rutile TiO2 for amine was also examined. Figure 4B compares
the adsorption isotherms for 4-methoxybenzylamine on rutile
TiO2 and Au/rutile TiO2 at 275 K: Y denotes the equilibrium
adsorption amount per unit mass of the solid. Rutile TiO2 has
good adsorptivity for 4-methoxybenzylamine. Diffuse reflec-
tance infrared spectroscopy using pyridine as a probe molecule
has suggested the presence of acid sites on the surface of rutile
TiO2.27 4-Methoxybenzylamine would be adsorbed on the
rutile TiO2 surface by the acid−base interaction. In addition,
loading a small amount of Au NP further increases the
adsorption amount by ∼3 μmol g−1. At a Au loading amount of
0.56 mass % and d of 5.0 nm, the surface area of Au NPs on
rutile TiO2 occupies only ∼2% of the total surface area. This
fact means that the amine is adsorbed on the surface of the Au
NP in preference to rutile TiO2. A recent density functional
theory study has shown that amine is adsorbed on under-
coordinated sites of the Au(111) surface via a donation/back-
donation mechanism.28
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) Cozzi, P. G. Chem. Soc. Rev. 2004, 33, 410.
(2) Murahashi, S. Angew. Chem., Int. Ed. 1995, 34, 2443.
(3) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew.
Chem., Int. Ed. 2003, 42, 4077.
(4) Mukaiyama, T.; Kawana, A.; Fukuda, Y.; Matsuo, J. Chem. Lett.
2001, 30, 390.
(5) Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T.
ACS Catal. 2011, 2, 1150.
(6) Schumperli, M. T.; Hammond, C.; Hermans, I. ACS Catal. 2012,
̈
2, 1108.
(7) Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Chem. Rev. 2012,
112, 1555.
(8) Wen, B.; Ma, J.-H.; Chen, C.-C.; Ma, W.-H.; Zhu, H.-Y.; Chao, J.-
C. Sci. China, Chem. 2011, 54, 887.
On the basis of these results, we can explain the essential
mechanism and the high selectivity of this reaction as follows:
In the anodic process, the LSPR-excited electron transfer from
Au NP to rutile TiO2 lowers the Fermi level of Au NPs, which
entails the oxidation ability of the Au NPs.23 Owing to the mild
oxidation ability, amines strongly adsorbed on the Au surface
are efficiently oxidized to imines without overoxidation. In the
cathodic process, O2 is possibly reduced by the electrons in the
conduction band (CB) of rutile TiO2, since the CB edge
(−0.05 V vs SHE)29 is close to the one-electron O2 reduction
potential (E0(O2/HO2) = −0.046 V).30 The amine oxidation is
drastically enhanced with addition of Ag+ ions as a sacrificial
electron acceptor under deaerated conditions (Supporting
Information Figure S2). This fact indicates that the O2
reduction is the rate-determining step in this reaction. On the
other hand, the CB edge of WO3 (+0.50 V vs SHE) is too low
for the O2 reduction to occur.31 In this manner, the mechanism
involving the electron transfer from MOs to O2 can also explain
the reason for the lower activity of Au/WO3. As reported in the
preceding paper, the activity of Au/rutile TiO2, which is
superior to that of Au/anatase TiO2, stems mainly from the
efficient electron transfer from Au NP to TiO2 because of the
optical decoupling between the LSPR and the interband
transition of Au NPs.21 On the other hand, as a result of the
increase in d, the LSPR absorption intensity increases while the
Au surface area decreases. The balance between them
determines the optimum d value.
(9) Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632.
(10) Silva, C. G.; Juarez, R.; Marino, T.; Molinari, R.; García, H. J.
́
Am. Chem. Soc. 2011, 133, 595.
(11) Yuzawa, H.; Yoshida, T.; Yoshida, H. Appl. Catal., B 2012, 115−
116, 294.
(12) Alvaro, M.; Cojocaru, B.; Ismail, A. A.; Petrea, N.; Ferrer, B.;
Harraz, F. A.; Parvulescu, V. I.; García, H. Appl. Catal., B 2010, 99,
191.
(13) Primo, A.; Marino, T.; Corma, A.; Molinari, R.; García, H. J. Am.
Chem. Soc. 2011, 133, 6930.
(14) Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Nano
Lett. 2011, 11, 1111.
(15) Wand, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.;
Whangbo, M.-H. Angew. Chem., Int. Ed. 2008, 48, 7931.
(16) Wang, P.; Huang, B.; Dai, Y.; Whangbo, M.-H. Phys. Chem.
Chem. Phys. 2012, 14, 9813.
(17) Kowalska, E.; Abe, R.; Ohtani, B. Chem. Commun. 2009, 241.
(18) Naya, S.; Inoue, A.; Tada, H. J. Am. Chem. Soc. 2010, 132, 6292.
(19) Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka,
S.; Hirai, T. J. Am. Chem. Soc. 2012, 134, 6309.
(20) Naya, S.; Teranishi, M.; Isobe, T.; Tada, H. Chem. Commun.
2010, 46, 815.
(21) Ide, Y.; Matsuoka, M.; Ogawa, M. J. Am. Chem. Soc. 2010, 132,
16762.
(22) Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.;
Whangbo, M.-H. J. Mater. Chem. 2011, 21, 9079.
(23) Kimura, K.; Naya, S.-i.; Jin-nouchi, Y.; Tada, H. J. Phys. Chem. C
2012, 116, 7111.
(24) Tada, H.; Kiyonaga, T.; Naya, S.-i. Metal Oxide-Supported Gold
Nanoparticles; Lambert Academic Publishing, 2012.
(25) Handbook of Chemistry and Physics, 89th edition; Lide, D. R.,
Ed.; CRC Press: Boca Raton, FL, 2008.
In summary, we have shown that visible-light irradiation of
Au/rutile TiO2 in amines yields the corresponding imines on a
synthetic scale with high selectivity (>99%) under solvent-free
conditions at 298 K. The information about the strong support
effects and Au particle size effects on the photocatalytic activity
should greatly contribute to the material design for plasmon
photocatalysts.
(26) Lang, X.; Ma, W.; Zhao, Y.; Chen, C.; Ji, H.; Zhao, J. Chem.
Eur. J. 2012, 18, 2624.
(27) Ferretto, L.; Glisenti, A. Chem. Mater. 2003, 15, 1181.
(28) Hoft, R. C.; Ford, M. J.; McDonagh, A. M.; Cortie, M. B. J. Phys.
Chem. C 2007, 111, 13886.
(29) Maruska, H. P.; Ghosh, A. K. Sol. Energy 1978, 20, 443.
(30) Denki Kagaku Binran, Electrochemical Society of Japan:
Maruzen, Tokyo, 2000.
ASSOCIATED CONTENT
* Supporting Information
Experimental details, properties of the supports and Au NPs
(Table S1, Figure S1), time course for the amine oxidation
■
S
(31) Scaife, D. E. Sol. Energy 1980, 25, 41.
13
dx.doi.org/10.1021/cs300682d | ACS Catal. 2013, 3, 10−13