J . Org. Chem. 1999, 64, 7365-7374
7365
A Mech a n istic In vestiga tion of Alk en e Ep oxid a tion by Ster ica lly
En cu m ber ed tr a n s-Dioxor u th en iu m (VI) P or p h yr in s
Chun-J in Liu, Wing-Yiu Yu,* Chi-Ming Che,* and Chi-Hung Yeung
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
Received March 23, 1999
The highly substituted dioxoruthenium(VI) porphyrins [RuVI(DPP)O2] (1a ; H2DPP ) 2,3,5,7,8,10,-
12,13,15,17,18,20-dodecaphenylporphyrin), [RuVI(TDCPP)O2] (1b; H2TDCPP ) meso-tetrakis(2,6-
dichlorophenyl)porphyrin), and [RuVI(TMOPP)O2] (1c; H2TMOPP ) meso-tetrakis(2,4,6-trimethoxy-
phenyl)porphyrin) are competent oxidants for alkene epoxidation. The oxidations were carried out
in a CH2Cl2/Hpz solution, and a paramagnetic bis(pyrazolato)ruthenium(IV) porphyrin, [RuIV(Por)-
(pz)2] (2; H2Por ) H2DPP, H2TDCPP, H2TMOPP), was isolated and characterized. For the oxidation
of cis-alkenes, stereoselectivity is dependent upon both the alkenes and the ruthenium oxidants,
and it decreases in the order: cis-stilbene > cis-â-methylstyrene > cis-â-deuteriostyrene. The
observation of inverse secondary KIE for the oxidation of â-d2-styrene [kH/kD ) 0.87 (1a ); 0.86 (1b)]
but not for the R-deuteriostyrene oxidations suggests that the C-O bond formation is more advanced
at the C(â) atom than at the C(R) atom of styrene, consistent with a nonconcerted mechanism. By
consideration of spin delocalization and polar effects, the second-order rate constants for the
oxidation of para-substituted styrenes by complexes 1a -c can linearly correlate with the
•
carboradical substituent constants σmb and σJ J (J iang, X.-K. Acc. Chem. Res. 1997, 30, 283). This
implies that the styrene oxidation by the dioxoruthenium(VI) porphyrins should involve rate-limiting
generation of a benzylic radical intermediate, and the magnitude of |F•J J /Fmb| > 1 suggests that the
spin delocalization effect is more important than the polar effect in the epoxidation reactions. The
spontaneous epoxidation of trans-â-methylstyrene by the sterically encumbered [RuVI(TDCPP)O2]
and [RuVI(TMOPP)O2] complexes and the comparable ∆S‡ values for their reactions with trans-â-
methylstyrene and styrene are incompatible with the “side-on approach” model; a “head-on
approach” model is implicated.
In tr od u ction
loporphyrin complexes, however, remains less under-
stood. Toward this end, our approach is to scrutinize
closely the stoichiometric reactions of organic substrates
with well-characterized and highly reactive oxo-metal
complexes.7-12
Metalloporphyrin-catalyzed alkene epoxidations and
alkane hydroxylations have been widely invoked as the
biomimetic reactions of cytochrome P450.1 These reac-
tions are often characterized by remarkable regio- and
stereoselectivities, and systematic structural variation of
the porphyrin ligands has proved to be a useful strategy
to achieve electronic and steric tuning of the catalysts.2
Highly enantioselective epoxidation of unfunctionalized
alkenes relying solely on nonbonding interactions has
also been developed by using chiral metalloporphyrin
catalysts.3,4 Reactive metal-oxo (MdO) complexes are
often invoked as reactive intermediates in the metal-
loporphyrin-catalyzed organic oxidations,2,5 and isolation
and/or characterization of some oxometalloporphyrin
complexes of Cr, Mn, and Fe have been reported.6 The
structure-reactivity relationship of reactive oxometal-
(5) (a) Chang, C. K.; Kuo, M.-S. J . Am. Chem. Soc. 1979, 101, 3413.
(b) Groves, J . T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans,
B. J . J . Am. Chem. Soc. 1981, 103, 2884. (c) Yamaguchi, K.; Watanabe,
Y.; Morishima, I. J . Chem. Soc., Chem. Commun. 1992, 1721. (d)
Ostovic, D.; He, G.-X.; Bruice, T. C. In Metalloporphyrins in Catalytic
Oxidations; Sheldon, R. A., Ed.; Marcel Dekker: New York, 1994;
Chapter 2, p 29. (e) Groves, J . T.; Lee, J .; Marla, S. S. J . Am. Chem.
Soc. 1997, 119, 6269.
(6) For [Fe(IV)dO]: (a) Chin, D.-H.; Balch, A. L.; La Mar, G. N. J .
Am. Chem. Soc. 1980, 102, 1446, 5945. (b) Balch, A. L.; Chan, Y.-W.;
Cheng, R.-J .; La Mar, G. N.; Latos-Grazynski, L.; Renner, M. W. J .
Am. Chem. Soc. 1984, 106, 7779. For [Cr(IV)dO]: (c) Groves, J . T.;
Kruper, W. J .; Haushalter, R. C.; Butler, W. M. Inorg. Chem. 1982,
21, 1363. For [Mn(IV)dO]: (d) Groves, J . T.; Stern, M. K. J . Am. Chem.
Soc. 1988, 110, 8628.
(7) (a) Ho, C.; Lau, T.-C.; Che, C.-M. J . Chem. Soc., Dalton Trans.
1991, 1901. (b) Ho, C.; Leung, W.-H.; Che, C.-M. J . Chem. Soc., Dalton
Trans. 1991, 2933. (c) Che, C.-M.; Li, C.-K.; Tang, W.-T.; Yu, W.-Y. J .
Chem. Soc., Dalton Trans. 1992, 3153. (d) Cheng, W.-C.; Yu, W.-Y.;
Li, C.-K.; Che, C.-M. J . Org. Chem. 1995, 60, 6840. (e) Fung, W.-H.;
Yu, W.-Y.; Che, C.-M. J . Org. Chem. 1998, 63, 7715.
(1) Cytochrome P-450: Structure, Mechanism and Biochemistry, 2nd
ed.; Oritz de Montellano, P. R., Ed.; Plenum Press: New York, 1995.
(2) (a) Meunier, B. Chem. Rev. 1992, 92, 1411. (b) Dolphin, D.;
Traylor, T. G.; Xie, L. Y. Acc. Chem. Res. 1997, 30, 251.
(3) (a) Groves, J . T.; Myers, R. S. J . Am. Chem. Soc. 1983, 105, 5791.
(b) Collman, J . P.; Zhang, X.; Lee, V. J .; Uffelman, E. S. Brauman, J .
I. Science 1993, 261, 1404. (c) Naruta, Y. In Metalloporphyrins In
Catalytic Oxidations; Sheldon, R. A., Ed.; Marcel Dekker: New York,
1994; Chapter 8, p 241. (d) Campbell, L. A.; Kodadek, T. J . J . Mol.
Catal. 1996, 113, 293. (e) Gross, Z.; Ini, S. J . Org. Chem. 1997, 62,
5514. (f) Collman, J . P.; Wang, Z.; Straumanis, A.; Quelquejeu, M. J .
Am. Chem. Soc. 1999, 121, 460.
(4) (a) Lai, T.-S.; Zhang, R.; Cheung, K.-K.; Kwong, H.-L.; Che, C.-
M. Chem. Commun. 1998, 1583. (b) Lai, T.-S.; Kwong, H.-L.; Zhang,
R.; Che, C.-M. J . Chem. Soc., Dalton Trans. 1998, 3559. (c) Zhang, R.;
Yu, W.-Y.; Lai, T.-S.; Che, C.-M. Chem. Commun. 1999, 409.
(8) (a) Stultz, L. K.; Binstead, R. A.; Reynolds, M. S.; Meyer, T. J .
J . Am. Chem. Soc. 1995, 117, 2520. (b) Dobson, J . C.; Seok, W. K.;
Meyer, T. J . Inorg. Chem. 1986, 25, 1325.
(9) Samsel, E. G.; Srinivasan, K.; Kochi, J . K. J . Am. Chem. Soc.
1985, 107, 7606.
(10) Mayer, J . M. Acc. Chem. Res. 1998, 31, 441.
(11) (a) Bailey, C. L.; Drago, R. S. J . Chem. Soc., Chem. Commun.
1987, 179. (b) Goldstein, A. S.; Drago, R. S. J . Chem. Soc., Chem.
Commun. 1991, 21. (c) Goldstein, A. S.; Beer, R. H.; Drago, R. S. J .
Am. Chem. Soc. 1994, 116, 2424.
(12) Marmion, M. E.; Leising, R. A.; Takeuchi, K. J . J . Coord. Chem.
1988, 19, 1.
10.1021/jo990517x CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/11/1999