Paper
Green Chemistry
new superior catalyst for fine organic chemical synthesis 23 C. Voisin, N. Del Fatti, D. Christofilos and F. Vallee, J. Phys.
under light irradiation. Since little input energy is consumed Chem. B, 2001, 105, 2264.
by other components of the reaction system, such as the 24 S. Link and M. A. El-Sayed, Int. Rev. Phys. Chem., 2000, 19,
solvent, support of the NPs, the atmosphere or container, this 409.
catalyst structure is highly efficient for driving various chemi- 25 L. Brus, Acc. Chem. Res., 2008, 41, 1742.
cal reactions with sunlight. The knowledge acquired in this 26 C. D. Lindstrom and X. Y. Zhu, Chem. Rev., 2006, 106, 4281.
study is useful for designing suitable photocatalysts made 27 R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations of
from gold alloyed with other transition metals and may inspire
Organic Compounds, Academic Press, New York, 1981.
further studies on new efficient photocatalysts of gold and 28 C. L. Hill, in Advances in Oxygenated Processes, ed.
other transition metals for a wide range of organic synthesis
driven by sunlight.
A. L. Baumstark, JAI Press, London, 1988, vol. 1, p. 1.
29 M. Hudlucky, Oxidations in Organic Chemistry; ACS Mono-
graph Series, American Chemical Society, Washington, DC,
1990.
30 Comprehensive Organic Synthesis, ed. B. M. Trost and I.
Fleming, Pergamon, Oxford, U.K., 1991.
Notes and references
1 C. C. Cheng, W. H. Ma and J. C. Zhao, Chem. Soc. Rev., 31 G. Cainelli and G. Cardillo, Chromium Oxidants in Organic
2010, 39, 4206.
Chemistry, Springer, Berlin, 1984.
2 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
32 D. G. Lee and U. A. Spitzer, J. Org. Chem., 1970, 35, 3589.
3 M. Zhang, Q. Wang, C. C. Chen, L. Zang, W. H. Ma and 33 T. F. Blackburn and J. Schwartz, J. Chem. Soc., Chem.
J. C. Zhao, Angew. Chem., Int. Ed., 2009, 48, 6081. Commun., 1977, 157.
4 X. J. Lang, H. W. Ji, C. C. Chen, W. H. Ma and J. C. Zhao, 34 G. J. Brink, I. W. C. E. Arends and R. A. Sheldon, Science,
Angew. Chem., Int. Ed., 2011, 50, 3934. 2000, 287, 1636.
5 T. Shishido, T. Miyatake, K. Teramura, Y. Hitomi, 35 S. S. Stahl, J. L. Thorman, R. C. Nelson and M. A. Kozee,
H. Yamashita and T. Tanaka, J. Phys. Chem. C, 2009, 113,
J. Am. Chem. Soc., 2001, 123, 7188.
18713.
36 M. A. Steinhoff, S. R. Fix and S. S. Stahl, J. Am. Chem. Soc.,
2002, 124, 766.
37 D. R. Jensen, M. J. Schultz, J. A. Mueller and M. S. Sigman,
Angew. Chem., Int. Ed., 2003, 42, 3810.
6 A. L. Linsebigler, G. Lu and J. T. Yates Jr., Chem. Rev., 1995,
95, 735.
7 N. Serpone, J. Photochem. Photobiol., A, 1997, 104, 1.
8 K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, 38 T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037.
Y. Inoue and K. Domen, Nature, 2006, 440, 295.
9 X. Chen, H. Y. Zhu, J. C. Zhao, Z. F. Zheng and X. P. Gao,
Angew. Chem., Int. Ed., 2008, 47, 5353.
10 H. Y. Zhu, X. B. Ke, X. Z. Yang, S. Sarina and H. W. Liu,
Angew. Chem., Int. Ed., 2010, 49, 9657.
39 K. Mori, T. Hara, T. Mizugaki, K. Ebitani and K. Kaneda,
J. Am. Chem. Soc., 2004, 126, 10657.
40 T. Nishimura, N. Kakiuchi, M. Inoue and S. Uemura, Chem.
Commun., 2000, 1245.
41 N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su and
L. Prati, J. Catal., 2006, 244, 113.
11 H. Y. Zhu, X. Chen, Z. F. Zheng, X. B. Ke, E. Jaatinen,
J. C. Zhao, C. Guo, T. F. Xie and D. J. Wang, Chem. 42 L. F. Liotta, A. M. Venezia, G. Deganello, A. Longo,
Commun., 2009, 7524.
12 S. Sarina, E. R. Waclawik and H. Y. Zhu, Green Chem., 2013,
15, 1814.
13 S. Sarina, H. Y. Zhu, E. Jaatinen, Q. Xiao, H. W. Liu, J. F. Jia,
C. Chen and J. Zhao, J. Am. Chem. Soc., 2013, 135, 5793.
14 X. B. Ke, S. Sarina, J. Zhao, X. G. Zhang, J. Chang and
H. Y. Zhu, Chem. Commun., 2012, 48, 3509.
A. Martorana, Z. Schay and L. Guczi, Catal. Today, 2001, 66,
271.
43 J. Chen, Q. Zhang, Y. Wang and H. Wan, Adv. Synth. Catal.,
2008, 350, 453.
44 K. M. Choi, T. Akita, T. Mizugaki, K. Ebitani and
K. Kaneda, New J. Chem., 2003, 27, 324.
45 Y. Uozumi and R. Nakao, Angew. Chem., Int. Ed., 2003, 42, 194.
15 X. B. Ke, X. G. Zhang, J. Zhao, S. Sarina, J. Barry and 46 M. Conte, H. Miyamura, S. Kobayashi and V. Chechik,
H. Y. Zhu, Green Chem., 2013, 15, 236. J. Am. Chem. Soc., 2009, 131, 7189.
16 P. Christopher, H. L. Xin, A. Marimuthu and S. Linic, Nat. 47 A. Maldotti, A. Molinari, R. Juarez and H. Garćia, Chem.
Mater., 2012, 11, 1044.
17 A. Marimuthu, J. W. Zhang and S. Linic, Science, 2013, 339,
1590.
18 P. Mulvaney, Langmuir, 1996, 12, 788.
19 S. Eustis and M. A. El-Sayed, Chem. Soc. Rev., 2006, 35, 209.
20 L. M. Liz-Marzán, Langmuir, 2006, 22, 32.
Sci., 2011, 2, 1831; K. Patel, S. Kapoor, D. P. Dave and
T. Mukherjee, Res. Chem. Intermed., 2006, 32, 103.
48 Y. W. Lee, N. H. Kim, K. Y. Lee, K. Kwon, M. Kim and
S. W. Han, J. Phys. Chem. C, 2008, 112, 6717.
49 Y. H. Chen, Y. H. Tseng and C. S. Yeh, J. Mater. Chem.,
2002, 12, 1419.
21 K. Yamada, K. Miyajima and F. Mafun, J. Phys. Chem. C, 50 A. Emeline, G. V. Kataeva, A. S. Rudakova, V. K. Ryabchuk
2007, 111, 11246. and N. Serpone, Langmuir, 1998, 14, 5011.
22 S. Link, C. Burda, Z. L. Wang and M. A. El-Sayed, J. Chem. 51 K. Yamada, K. Miyajima and F. J. Mafun, Phys. Chem. C,
Phys., 1999, 111, 1255.
2007, 111, 11246.
340 | Green Chem., 2014, 16, 331–341
This journal is © The Royal Society of Chemistry 2014