2
D. L. Reger, Comments Inorg. Chem., 1999, 21, 1; S. Trofimenko,
Chem. Rev., 1993, 93, 943; S. Trofimenko, Scorpionates: The
Coordination Chemistry of Polypyrazolylborate Ligands, Imperial
College Press, London, 1999.
Colleges, Cambridge (Fellowship for A. D. H.), B.P. (R.R.), Clare
College, Cambridge (Denman Baynes Fellowship, R. A. L.) St.
Catharine’s College, Cambridge (Fellowship for A. D. W.), the
States of Guernsey and the Domestic and Millennium Fund (R. A.
K.), and the Cambridge European Trust (F. G.) for financial
support. We also thank Dr. J. Davies for collecting X-ray data on
complexes 2 and 3.
3 M. A. Beswick, M. K. Davies, P. R. Raithby, A. Steiner and
D. S. Wright, Organometallics, 1997, 16, 1109; M. A. Beswick,
C. J. Belle, M. K. Davies, M. A. Halcrow, P. R. Raithby, A. Steiner
and D. S. Wright, Chem. Commun., 1996, 2619; D. Morales, J. P e´ rez,
L. Riera, V. Riera and D. Miguel, Organometallics, 2001, 20, 4517.
4
F. Garc ´ı a, A. D. Hopkins, R. A. Kowenicki, M. McPartlin,
M. C. Rogers and D. S. Wright, Organometallics, 2004, 23, 3884.
a
Carmen Soria Alvarez, Felipe Garc ´ı a, Simon M. Humphrey,
a
a
a
a
Alexander D. Hopkins,* Richard A. Kowenicki, Mary McPartlin,
b
5 Details of the variable-temperature magnetic measurements of 2 and 3
will be included in a future full paper.
6 (a) P. A. Anderson, T. Astley, M. A. Hitchman, F. R. Keene,
B. Moubaraki, K. S. Murray, B. W. Skelton, E. R. T. Tiekink,
H. Toffund and A. H. White, J. Chem. Soc., Dalton Trans., 2000, 3505
a
Richard A. Layfield, Robert Raja,* Michael C. Rogers,
a
a
a
Anthony D. Woods and Dominic S. Wright*
a
a
University of Cambridge, Department of Chemistry, Lensfield Road,
Cambridge, UK CB2 1EW. E-mail: adh1002@cam.ac.uk;
rr243@cam.ac.uk; dsw1000@cam.ac.uk; Fax: +44 1223 336362;
Tel: +44 1223 763122
2+
(Fe–N range 1.947–1.981 A˚ ); (b) For [{HC(2-py) } Fe] and related
3
2
cations reversible processes occur with E1/2 for Fe(III)/Fe(II) ca. + 0.70 V.
7 The characteristic magenta colour of low-spin Fe(II) tris-pyrazolylbo-
b
School of Chemistry, University of North London, Holloway Road,
1
1
London, UK N7 8DB
rates has been ascribed previously to a A A T d–d transition in
1
g
1g
which intensity borrowing occurs with a nearby charge-transfer
absorption: J. P. Jesson, S. Trofimenko and D. R. Eaton, J. Am.
Notes and references
21
Chem. Soc., 1967, 89, 3158 (ca. 19 000 cm , e 5 57–90 mol dm
21
3
2
1
cm ).
8 E. S. Kucharski, W. R. McWinnie and A. H. White, Aust. J. Chem.,
1976, 31, 53.
{
group R3, Z = 3, a = b = 10.2291(5), c = 33.6643(18) A, V = 3050.5(3) A,
Crystal data for 2: C32
¯
H
30Al
2 6
FeN , M= 608.43, rhombohedral, space
˚
˚
2
1
m(Mo–Ka) = 0.438 mm , T = 180(2) K. Data were collected on a Nonius
KappaCCD diffractometer. Of a total of 5072 reflections collected, 670
were independent (Rint = 0.072). The structure was solved by direct
2
9
3
For Fe(II) complexes containing [RB(pz9) ] ligands: (a) J. D. Oliver,
D. P. Mullica, B. B. Hitchman and W. O. Milligan, Inorg. Chem., 1980,
9, 165; (b) D. M. Eichhorn and W. H. Armstrong, Inorg. Chem., 1990,
9, 3607; (c) S. Calogero, G. G. Lobbia, P. Cecchi, G. Valle and
2
1
2
methods and refined by full-matrix least squares on F (G. M. Sheldrick,
SHELX-97, G o¨ ttingen, 1997). Application of the SQUEEZE programme
in PLATON (version 1.07: A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7)
removed unassigned residual electron density due to disordered solvent.
Final R1 = 0.042 [I > 2s(I)] and wR2 = 0.113 (all data). CCDC 249604.
J. Friedl, Polyhedron, 1994, 13, 67; (d) Y. Sohrin, H. Kokusen and
M. Matsui, Inorg. Chem., 1995, 34, 3928; (e) A. L. Rheingold, G. P. Yap,
L. M. L. Liable-Sands, I. A. Guzei and S. Trofimenko, Inorg. Chem.,
1997, 36, 6261; (f) C. Janiak, S. Temizdemir, S. Dechert, W. Deck,
F. Girsaedies, J. Heinze, M. J. Kolm, T. G. Scharmann and
O. M. Zipffel, Eur. J. Inorg. Chem., 2000, 1229; (g) P. Gecchi,
M. Berrettoni, M. Giorgetti, G. G. Lobbia, B. Calogero and L. Slievano,
Inorg. Chim. Acta, 2001, 318, 67; (h) T. Kitano, Y. Sohrin, Y. Hata,
H. Wada, T. Hori and K. Ueda, Bull. Chem. Soc. Jpn., 2003, 76, 1365.
2 6
Crystal data for 3?thf; C36H38Al MnN O, M = 679.62, monoclinic, space
˚
group Cc, Z = 4, a = 9.2658(19), b = 24.167(5), c = 15.877(3) A, V =
˚
553.1(12) A, m(Mo–Ka) = 0.458 mm , T = 180(2) K. Data were collected
21
3
on a Nonius KappaCCD diffractometer. Of a total of 9511 reflections
collected, 4469 were independent (Rint = 0.067). The structure was solved
by direct methods and refined by full-matrix least squares on F (G. M.
Sheldrick, SHELX-97, G o¨ ttingen, 1997). Four residual maxima in the final
2
10 For recent examples, see: (a) M. C. White, A. G. Doyle and
E. N. Jacobsen, J. Am. Chem. Soc., 2001, 123, 7194; (b) L. Espinal,
S. L. Suib and J. F. Rusling, J. Am. Chem. Soc., 2004, 126, 7676 and
references therein.
˚
23
difference Fourier (ca. 2–3 eA ) could not be explained. Repeated data
collection failed to resolve this problem that was attributed to co-
crystallisation of small amounts of an unidentified material. The most
satisfactory refinement was obtained by arbitrarily assigning metal atoms
of 10% occupancy to the four sites of residual electron density. Final R1 =
11 J. R. Monnier, Appl. Catal. A, 2001, 221, 73.
12 Q. Tang, Y. Wang, J. Liang, P. Wang, Q. Zhang and H. Wan, Chem.
2+
0.069 [I > 2s(I)] and wR2 = 0.179 (all data). CCDC 249605. See http://
Commun., 2004, 440 (heterogeneous catalyst involving a Co -exchanged
faujasite zeolite).
www.rsc.org/suppdata/cc/b4/b413488e/ for crystallographic data in .cif or
other electronic format.
1
3 X. Meng, K. Lin, X. Yang, Z. Sun, D. Jiang and F.-S. Xiao, J. Catal.,
003, 218, 460 (heterogeneous catalyst involving Cu (OH)PO and
Cu O(PO ; most selective 14.9% conversion with 67.8% epoxide and
33.2% benzaldehyde).
2
2
4
1
L. F. Szezepura, L. M. Witham and K. J. Takeuchi, Coord. Chem. Rev.,
998, 174, 5.
4
4 2
)
1
2
00 | Chem. Commun., 2005, 198–200
This journal is ß The Royal Society of Chemistry 2005