A MONONUCLEAR NICKEL(II) COMPLEX AND A DINUCLEAR MANGANESE(III)
49
7. Marinescu, G., Madalan, A.M., and Andruh, M., J.
Coord. Chem., 2015, vol. 68, no. 3, p. 479.
which suggests that the regeneration of the catalyst
takes place. Epoxidation of styrene catalyzed by the
manganese complex are below:
8. Maiti, M., Thakurta, S., Sadhukhan, D., et al., Polyhe-
dron, 2013, vol. 65, no. 1, p. 6.
9. Kuai, H.W., Cheng, X.-C., and Zhu, X.-H., Polyhe-
dron, 2013, vol. 50, no. 1, p. 390.
Selectivity, %
Time,
h
Conversion, Epoxide
Oxidant
%
yield, %
еpoxide оther
10. Nagesh, G.Y. and Raj, K.M., J. Mol. Struct., 2015,
vol. 1079, p. 423.
2.5 PhIO
3.0 NaOCl
94
79
81
62
85
78
15
22
11. Ebrahimipour, S.Y., Mohamadi, M., Castro, J., et al.,
J. Coord. Chem., 2015, vol. 68, no. 4, p. 632.
12. Begum, A.B., Rekha, N.D., Kumar, B.C.V., et al., Bio-
The data reveal that complex II as a catalyst con-
org. Med. Chem. Lett., 2014, vol. 24, no. 15, p. 3559.
verts styrene efficiently in the presence of both oxi-
dants. The catalyst is selective towards the formation 13. Martinez, A., Hemmert, C., and Meunier, B., J. Catal.,
2005, vol. 234, no. 2, p. 250.
of styrene epoxide despite of the formation of by-
products which have been identified by GC-MS as
benzaldehyde, phenylacetaldehyde, styrene epoxide
derivative, alcohols, etc. When the reactions were car-
ried out with PhIO, styrene conversions are 94%. With
NaOCl as oxidant, styrene conversion dropped to
79%. It is evident that PhIO acts as a better oxidant
with respect to both styrene conversion and styrene
epoxide selectivity.
14. Erdem, O. and Guzel, B., Inorg. Chim. Acta, 2014,
vol. 418, p. 153.
15. Louloudi, M., Nastopoulos, V., Gourbatsis, S., et al.,
Inorg. Chem. Commun., 1999, vol. 2, no. 10, p. 479.
16. Srinivasan, K., Michaud, P., and Kochi, J.K., J. Am.
Chem. Soc., 1986, vol. 108, no. 9, p. 2309.
17. Adam, W., Roschmann, K.J., Saha-Moller, C.R.,
et al., J. Am. Chem. Soc., 2002, vol. 124, no. 18, p. 5068.
18. Majumder, S., Hazra, S., Dutta, S., et al., Polyhedron,
2009, vol. 28, no. 12, p. 2473.
ACKNOWLEDGMENTS
19. Ourari, A., Baameur, L., Bouacida, S., et al., Acta
Crystallogr., Sect. E: Struct. Rep. Online, 2012, vol. 68,
no. 6, p. o1760.
20. Sheldrick, G.M., SAINT (version 6.02), SADABS (ver-
sion 2.03), Madison (WI, USA): Bruker AXS Inc.,
2002.
We acknowledge the Education Office of Shanxi
Province (project no. 11JK0601) and the Natural Sci-
ence Foundation of China (project no. 21173003) for
supporting this work.
21. Sheldrick, G.M., SHELXL-9, A Program for Crystal
Structure Solution, Göttingen: Univ. of Göttingen,
1997.
REFERENCES
1. Kal, S., Ayensu-Mensah, L., and Dinolfo, P.H., Inorg.
Chim. Acta, 2014, vol. 423, p. 201.
22. Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, no. 1,
2. Ebrahimipour, S.Y., Khabazadeh, H., Castro, J., et al.,
p. 81.
Inorg. Chim. Acta, 2015, vol. 427, p. 52.
23. Kondo, M., Nabari, K., Horiba, T., et al., Inorg. Chem.
3. Han, S. and Wang, Y., J. Chil. Chem. Soc., 2014, vol. 59,
Commun., 2003, vol. 6, no. 2, p. 154.
no. 4, p. 2753.
24. Shimazaki, Y., Yajima, T., Tani, F., et al., J. Am. Chem.
Soc., 2007, vol. 129, no. 9, p. 2559.
4. Cristovao, B. and Miroslaw, B., Inorg. Chem. Com-
mun., 2015, vol. 52, no. 1, p. 64.
25. Bhargavi, G., Rajasekharan, M.V., Costes, J.-P., et al.,
5. Novoa, N., Justaud, F., Hamon, P., et al., Polyhedron,
Polyhedron, 2009, vol. 28, no. 7, p. 1253.
2015, vol. 86, no. 1, p. 81.
6. Upadhyay, A., Das, C., Meera, S.N., et al., J. Chem. 26. Mandal, S., Rosair, G., Ribas, J., et al., Inorg. Chim.
Sci., 2014, vol. 126, no. 5, p. 1443. Acta, 2009, vol. 362, no. 7, p. 2200.
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 42 No. 1 2016