A. Yep et al. / Bioorganic Chemistry 34 (2006) 325–336
335
Overall, the mutagenesis results confirmed predictions based on the KdcA homology
model, i.e., that Val461, Ser286, Phe381, and Met538 each contributes to substrate binding
and catalysis by KdcA. However, the results also showed that mutation of a single residue
was unlikely to provide an ‘‘instant’’ conversion to KdcA into a PDC. Therefore, in pre-
liminary experiments, combinations of double mutants as well as the triple mutant were
generated for the S286Y, F381W, and M538W variants. Unfortunately, these mutant
enzymes had impaired solubility and stability, and preliminary experiments suggest that
they have extremely low activity towards the substrates tested in this work (data not
shown). We have now turned our attention towards saturation mutagenesis to identify
candidates with improved PDC activity.
Acknowledgments
This paper is dedicated to the memory of Miriam S. Hasson, a collaborator and friend,
whose presence is sorely missed. The work was supported by a Frontiers in Integrative
Biology Research Grant (EF 0425719) from the National Science Foundation (M.J.M.
and G.L.K.).
Appendix A. Supplementary data
References
[
[
[
1] A. Schellenberger, Biochim. Biophys. Acta 1385 (1998) 177–186.
2] D. Dobritzsch, S. Konig, G. Schneider, G. Lu, J. Biol. Chem. 273 (1998) 20196–20204.
3] P. Arjunan, T. Umland, F. Dyda, S. Swaminathan, W. Furey, M. Sax, B. Farrenkopf, Y. Gao, D. Zhang, F.
Jordan, J. Mol. Biol. 256 (1996) 590–600.
[
[
4] M.S. Hasson, A. Muscate, M.J. McLeish, L.S. Polovnikova, J.A. Gerlt, G.L. Kenyon, G.A. Petsko, D.
Ringe, Biochemistry 37 (1998) 9918–9930.
5] A. Sch u¨ tz, T. Sandalova, S. Ricagno, G. H u¨ bner, S. K o¨ nig, G. Schneider, Eur. J. Biochem. 270 (2003) 2312–
2321.
[
[
[
6] M. Pohl, P. Siegert, K. Mesch, H. Bruhn, J. Grotzinger, Eur. J. Biochem. 257 (1998) 538–546.
7] P.M. Weiss, G.A. Garcia, G.L. Kenyon, W.W. Cleland, P.F. Cook, Biochemistry 27 (1988) 2197–2205.
8] A. Sch u¨ tz, R. Golbik, K. Tittmann, D.I. Svergun, M.H. Koch, G. H u¨ bner, S. K o¨ nig, Eur. J. Biochem. 270
(2003) 2322–2331.
[
9] M.J. McLeish, G.L. Kenyon, E.S. Polovnikova, A.S. Bera, N.L. Anderson, M.S. Hasson, in: F. Jordan,
M.S. Patel (Eds.), Catalytic mechanisms and role in normal and disease states, Marcel Dekker Inc., New
York, 2004, pp. 131–141.
[
[
[
[
10] P. Siegert, M.J. McLeish, M. Baumann, M.M. Kneen, G.L. Kenyon, M. Pohl, Prot. Eng. Des. Sel. 18 (2005)
45–357.
11] B.A. Smit, J.E.T. van Hylckama Vlieg, W.J.M. Engels, L. Meijer, J.T.M. Wouters, G. Smit, Appl. Environ.
Microbiol. 71 (2005) 303–311.
12] R. Sanchez, A. Sali, in: D.M. Webster (Ed.), Protein structure prediction, methods and protocols, Humana
Press, New Jersey, 2000, pp. 97–129.
13] D. Higgins, J. Thompson, T. Gibson, J.D. Thompson, D.G. Higgins, T.J. Gibson, Nucleic Acids Res. 22
3
(1994) 4673–4680.
[
[
[
14] L.J. McGuffin, K. Bryson, D.T. Jones, Bioinformatics 16 (2000) 404–405.
15] R. Luthy, J.U. Bowie, D. Eisenberg, Nature 356 (1992) 83–85.
16] R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, J. Appl. Crystallogr. 26 (1993) 283–291.