10.1002/anie.201807134
Angewandte Chemie International Edition
COMMUNICATION
18, 5174-5177; e) A. E. Wendlandt, S. S. Stahl, J. Am. Chem. Soc.
2014, 136, 506-512.
BnCl
AgOTf
N
N
[5]
For selected examples of flavin-catalyzed aerobic oxidations, see: a) H.
Iida, Y. Imada, S. I. Murahashi, Org. Biomol. Chem. 2015, 13, 7599-
7613; b) S. Chen, F. W. Foss, Jr., Org. Lett. 2012, 14, 5150-5153; c) Y.
Imada, T. Kitagawa, T. Ohno, H. Iida, T. Naota, Org. Lett. 2010, 12, 32-
35; d) T. Ishikawa, M. Kimura, T. Kumoi, H. Iida, ACS Catal. 2017, 7,
4986-4989; e) R. Ohkado, T. Ishikawa, H. Iida, Green Chem. 2018, 20,
984-988.
CH2Cl2
rt
BCC
25
54% yield
(DMF)
1N HCl
i-Pr2NEt
DMF
rt
N N
+
N
N –
H
H
26
Ph
2
[6]
[7]
[8]
[9]
M. Shibuya, Y. Osada, Y. Sasano, M. Tomizawa, Y. Iwabuchi, Y. J. Am.
Chem. Soc. 2011, 133, 6497-6500.
+
PhCHO
For example: A. Maity, S.-M. Hyun, D. C. Powers, Nature Chem. 2018,
10, 200-204.
Scheme 1. Stepwise progression through the intermediates of the catalytic
cycle.
U. Wild, F. Schön, H.-J. Himmel, Angew. Chem. 2017, 129, 16330-
16333; Angew. Chem. Int. Ed. 2017, 56, 16410-16413.
a) W. T. Borden, R. Hoffmann, T. Stuyver, B. Chen, J. Am. Chem. Soc.
2017, 139, 9010-9018; b) M. Filatov, W. Reckien, S. D. Peyerimhoff, S.
Shaik, J. Phys. Chem. A. 2000, 104, 12014-12020.
In conclusion, we have introduced a platform for catalytic O2-
coupled oxidation that makes use of a novel mechanistic
paradigm. The ability of BCC to undergo nucleophilic attack,
1,3-prototropic shift, and hydrolysis has enabled the
development of a mechanistically-unique catalytic oxidation of
alkyl halides. We expect that this organocatalytic oxidation
strategy should be applicable to a variety of transformations
involving other electrophiles. More generally, the heretofore
underutilized autoxidation of hydrazines may prove to be a
useful platform for controlled oxidation.
[10] For example, see: a) M. G. Lazzara, J. J. Harrison, M. Rule, E. F.
Hilinski, J. A. Berson J. Am. Chem. Soc. 1982, 104, 2233-2243. b) P. B.
Dervan, D. S. Santilli J. Am. Chem. Soc. 1980, 102, 3863-3870. c) R. T.
Dey, T. K. Sarkar J. Org. Chem. 2010, 75, 4521-4529. d) J. Nakayama,
R. Hasemi J. Am. Chem. Soc. 1990, 112, 5654-5655. e) G. H. Daub, L.
F. Cannizzo J. Org. Chem. 1982, 47, 5034-5035. f) C. G. Overberger, T.
F. Merkel J. Org. Chem. 1981, 46, 442-446. g) K. Exner, G. Fischer, N.
Bahr, E. Beckmann, M. Lugan, F. Yang, G. Rihs, M. Keller, D. Hunkler,
L. Knothe, H. Prinzbach, Eur. J. Org. Chem. 2000, 763-785. h) W.
Bernlöhr, M. A. Flamm-ter Meer, J. H. Kaiser, M. Schmittel, H.-D.
Beckhaus, C. Rüchardt, Chem. Ber. 1986, 119, 1911-1918. i) C.-X.
Wang, R. S. Sheridan, Tetrahedron Lett. 1993, 34, 5673-5676.
[11] Diazene carboxamides have been used stoichiometrically for thiol
oxidation: a) J. Košmrlj, M. Kočevar, S. Polanc, J. Chem. Soc. Perkin
Trans. I 1998, 3917-3920. b) S. Polanc J. Heterocyc. Chem. 2005, 42,
401-412.
Acknowledgements
Financial support for this work was provided by the National
Science Foundation (CHE-0953259). IBS thanks Professor
Xavier Roy for mentorship and helpful conversations. We thank
Rebecca Wilson for assistance in the preparation of the
manuscript.
[12] a) J. W. Barton, Benzo[c]cinnolines Advances in Heterocyclic
Chemistry, Vol. 24, School of Chemistry, University of Bristol, England,
1979, p. 151; b) S. D. Ross, G. J. Kahan, W. A. Leach, J. Am. Chem.
Soc. 1952, 74, 4122-4126.
[13] The single electron oxidation potential of 1,2-dihydrobenzo[c]cinnoline
is reported as E1/2 = +0.05 V vs. SCE in THF. Y. Mugnier, E. Laviron, J.
Org. Chem. 1988, 53, 5781-5783.
Keywords: oxidation • organocatalysis • Kornblum oxidation •
benzo[c]cinnoline • diazene
[14] a) M. Sommelet, Compt. Rend. 1913, 157, 852-854; b) S. J. Angyal,
Org. React. 1954, 8, 197–217; c) A. G. Godfrey, B. Ganem,
Tetrahedron Lett. 1990, 31, 4825-4826; d) H. B. Hass, M. L. Bender, J.
Am. Chem. Soc. 1949, 71, 1767-1769; e) F. Krohnke, Angew. Chem.
1963, 75, 181-194; Angew. Chem. Int. Ed., Engl. 1963, 2, 380-393. For
a review see: f) P. Knochel, G. Molander, Ed. Oxidation of Carbon–
Halogen Bonds Comprehensive Organic Synthesis II, Vol. 7; Elsevier:
Oxford, 2014, pp. 744-769; g) P. Zheng, L. Yan, X. Ji, X. Duan, Synth.
Commun. 2010, 41, 16-19; h) Q. Liu, M. Lu, F. Sun, J. Li, Y. Zhao,
Synth. Commun. 2008, 38, 4188-4197; i) D. X. Chen, C. M. Ho, Q. Y. R.
Wu, P. R. Wu, F. M. Wong, W. Wu, Tetrahedron Lett. 2008, 49, 4147-
4148; j) J. Tang, J. Zhu, Z. Shen, Y. Zhang, Tetrahedron Lett. 2007, 48,
1919-1921; k) G. Bratulescu, Synth. Commun. 2008, 38, 2748-2752; l)
S. W. Kshirsagar, N. R. Patil, S. D. Samant, Tetrahedron Lett. 2008, 49,
1160-1162; m) A. Bayat, M. Shakourian-Fard, S. Ramezanpour, M.
Mahmoodi Hashemi, New J. Chem. 2015, 39, 3845-3851; n) N. Gupta,
A. Thakur, P. Bhardwaj, New J. Chem. 2014, 38, 3749-3754; o) C. Li, P.
Zheng, J. Li, H. Zhang, Y. Cui, Q. Shao, X. Ji, J. Zhang. P. Zhao, Y. Xu,
Angew. Chem. 2003, 115, 5217-5220; Angew. Chem. Int. Ed. 2003, 42,
5063-5066.
[1]
[2]
For reviews on aerobic oxidation with transition metals, see: a) K. M.
Gligorich, M. S. Sigman, Chem. Commun. 2009, 3854-3867; b) A. N.
Campbell, S. S. Stahl, Acc. Chem. Res. 2012, 45, 851-863; c) S. D.
McCann, S. S. Stahl, Acc. Chem. Res. 2015, 48, 1756-1766; d) D.
Wang, A. B. Weinstein, P. B. White, S. S. Stahl, Chem. Rev. 2018, 118,
2636-2679.
For reviews on non-metal based aerobic oxidations: a) S. Wertz, A.
Studer, Green Chem. 2013, 15, 3116-3134; b) K. Chen, P. Zhang, Y.
Wang, H. Li, Green Chem. 2014, 16, 2344-2374; c) Q. Cao, L. M.
Dornan, L. Rogan, N. L. Hughes, M. J. Muldoon, Chem. Commun. 2014,
50, 4524-4543.
[3]
[4]
For organocatalysis reviews, see: a) M. J. Gaunt, C. C. Johansson, A.
McNally, N. T. Vo, Drug Discov. Today 2007, 12, 8-27; b) J. Alemán, S.
Cabrera, Chem. Soc. Rev. 2013, 42, 774-793; c) B. List, Chem. Rev.
2007, 107, 5413-5415.
Quinone catalyzed aerobic oxidations: a) A. E. Wendlandt, S. S. Stahl,
Angew. Chem. 2015, 127,14848–14868; Angew. Chem. Int. Ed. 2015,
54, 14638-14658; b) A. E. Wendlandt, S. S. Stahl, Org. Lett. 2012, 14,
2850-2853; c) Y. Qin, L. Zhang, J. Lv, S. Luo, J.-P. Cheng, Org. Lett.
2015, 17, 1469-1472; d) Y. Goriya, H. Y. Kim, K. Oh, Org. Lett. 2016,
[15] For examples of the Kornblum oxidation: a) W. D. Paquette, R. E.
Taylor, Org. Lett. 2004, 6, 103-106; b) K. Müller, H. Prinz, I. Gawlik, K.
Ziereis, H.-S. Huang, J. Med. Chem. 1997, 40, 3773-3780; c) T. W. Ly,
J.-H. Liao, K.-S. Shia, H.-J. Liu, Synthesis 2004, 2004, 271-275. d) R.
This article is protected by copyright. All rights reserved.