Organic Letters
Letter
Oxidative Cleavage of Carbon-Carbon Double Bonds in the Presence
of Water. J. Am. Chem. Soc. 2007, 129, 2772−2773.
ASSOCIATED CONTENT
* Supporting Information
■
S
(4) (a) Mu, M. M.; Wang, Y. W.; Qin, Y. T.; Yan, X. L.; Li, Y.; Chen,
L. G. Two-Dimensional Imine-Linked Covalent Organic Frameworks
as a Platform for Selective Oxidation of Olefins. ACS Appl. Mater.
Interfaces 2017, 9, 22856−22863. (b) Cornell, C. N.; Sigman, M. S.
Discovery of and Mechanistic Insight into a Ligand-Modulated
Palladium-Catalyzed Wacker Oxidation of Styrenes Using TBHP. J.
Am. Chem. Soc. 2005, 127, 2796−2797. (c) Cancino, P.; Paredes-
García, V.; Torres, J.; Martínez, S.; Kremer, C.; Spodine, E.
{[Cu3Lu2(ODA)6(H2O)6]·10H2O}n: the First Heterometallic Frame-
work based on Copper IJII)/Lutetium IJIII) for the Catalytic
Oxidation of Olefinsand Aromatic Benzylic Substrates. Catal. Sci.
Technol. 2017, 7, 4929−4933. (d) Bregante, D. T.; Flaherty, D. W.
Periodic Trends in Olefin Epoxidation over Group IV and V
Framework-Substituted Zeolite Catalysts: A Kinetic and Spectro-
scopic Study. J. Am. Chem. Soc. 2017, 139, 6888−6898. (e) Bregante,
D. T.; Thornburg, N. E.; Notestein, J. M.; Flaherty, D. W.
Consequences of Confinement for Alkene Epoxidation with Hydro-
gen Peroxide on Highly Dispersed Group 4 and 5 Metal Oxide
Catalysts. ACS Catal. 2018, 8, 2995−3010. (f) Ivanchikova, I. D.;
Maksimchuk, N. V.; Skobelev, I. Y.; Kaichev, V. V.; Kholdeeva, O. A.
Mesoporous Niobium-Silicates Prepared by Evaporation-Induced
Self-Assembly as Catalysts for Selective Oxidations with Aqueous
H2O2. J. Catal. 2015, 332, 138−148. (g) Deng, X. Y.; Friend, C. M.
Selective Oxidation of Styrene on an Oxygen-Covered Au (111). J.
Am. Chem. Soc. 2005, 127, 17178−17179.
(5) (a) Zou, H.; Xiao, G. S.; Chen, K. H.; Peng, X. H. Noble Metal-
Free V2O5/g-C3N4 Composites for Selective Oxidation of Olefins
Using Hydrogen Peroxide as An Oxidant. Dalton Trans. 2018, 47,
13565−13572. (b) Kotani, H.; Ohkubo, K.; Fukuzumi, S. Photo-
catalytic Oxygenation of Anthracenes and Olefins with Dioxygen via
Selective Radical Coupling Using 9-Mesityl-10-methylacridinium Ion
as an Effective Electron-Transfer Photocatalyst. J. Am. Chem. Soc.
2004, 126, 15999−16006. (c) Mojarrad, A. G.; Zakavi, S. Photo-
catalytic Activity of the Molecular Complexes of meso-Tetraarylpor-
phyrins with Lewis Acids for the Oxidation of Olefins: Significant
Effects of Lewis Acids and meso Substituents. Eur. J. Inorg. Chem.
2017, 2017, 2854−2862. (d) Shiraishi, Y.; Teshima, Y.; Hirai, T.
Visible Light-Induced Partial Oxidation of Olefins on Cr-Containing
Silica with Molecular Oxygen. J. Phys. Chem. B 2006, 110, 6257−
6263.
(6) (a) Goldsmith, B. R.; Hwang, T.; Seritan, S.; Peters, B.; Scott, S.
L. Rate-Enhancing Roles of Water Molecules in Methyltrioxorhenium
Catalyzed Olefin Epoxidation by Hydrogen Peroxide. J. Am. Chem.
Soc. 2015, 137, 9604−9616. (b) Schoenfeldt, N. J.; Ni, Z. J.; Korinda,
A. W.; Meyer, R. J.; Notestein, J. M. Manganese Triazacyclononane
Oxidation Catalysts Grafted under Reaction Conditions on Solid
Cocatalytic Supports. J. Am. Chem. Soc. 2011, 133, 18684−18695.
(c) Das, B.; Al-Hunaiti, A.; Haukka, M.; Demeshko, S.; Meyer, S.;
Shteinman, A. A.; Meyer, F.; Repo, T.; Nordlander, E. Catalytic
Oxidation of Alkanes and Alkenes by H2O2 with a μ-Oxido Diiron
(III) Complex as Catalyst/Catalyst Precursor. Eur. J. Inorg. Chem.
2015, 2015, 3590−3601. (d) Kim, J.; Chun, J.; Ryoo, R. MFI Zeolite
Nanosheets with Post-Synthetic Ti Grafting for Catalytic Epoxidation
of Bulky Olefins using H2O2. Chem. Commun. 2015, 51, 13102−
13105. (e) Luo, J.; Zhang, J. Aerobic Oxidation of Olefins and Lignin
Model Compounds Using Photogenerated Phthalimide-N-oxyl
Radical. J. Org. Chem. 2016, 81, 9131−9137. (f) Song, X. j.; Yan,
Y.; Wang, Y. N.; Hu, D. W.; Xiao, L.; Yu, J. H.; Zhang, W. X.; Jia, M. J.
Hybrid Compounds Assembled from Coppertriazole Complexes and
Phosphomolybdic Acid as Advanced Catalysts for the Oxidation of
Olefins with oxygen. Dalton Trans. 2017, 46, 16655−16662.
The Supporting Information is available free of charge on the
Detailed experimental procedure, characterization meth-
ods, and additional data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was financially supported by the National Natural
Science Foundation of China (U1610104 and 21676046).
■
REFERENCES
■
(1) (a) Oloo, W. N.; Banerjee, R.; Lipscomb, J. D.; Que, L.
Equilibrating (L) FeIII-OOAc and (L) FeV (O) Species in Hydro-
carbon Oxidations by Bio-Inspired Nonheme Iron Catalysts Using
H2O2 and AcOH. J. Am. Chem. Soc. 2017, 139, 17313−17326.
(b) Ruddy, D. A.; Tilley, T. D. Kinetics and Mechanism of Olefin
Epoxidation with Aqueous H2O2 and a Highly Selective Surface-
Modified TaSBA15 Heterogeneous Catalyst. J. Am. Chem. Soc. 2008,
130, 11088−11096. (c) de Boer, J. W.; Brinksma, J.; Browne, W. R.;
Meetsma, A.; Alsters, P. L.; Hage, R.; Feringa, B. L. cis-
Dihydroxylation and Epoxidation of Alkenes by [Mn2O-
(RCO2)2(tmtacn)2]: Tailoring the Selectivity of a Highly H2O2-
Efficient Catalyst. J. Am. Chem. Soc. 2005, 127, 7990−7991. (d) Puls,
̈
F.; Knolker, H.-J. Conversion of Olefins into Ketones by an Iron-
Catalyzed Wacker-type Oxidation Using Oxygen as the Sole Oxidant.
Angew. Chem., Int. Ed. 2018, 57, 1222−1226. (e) Thornburg, N. E.;
Thompson, A. B.; Notestein, J. M. Periodic Trends in Highly
Dispersed Groups IV and V Supported Metal Oxide Catalysts for
Alkene Epoxidation with H2O2. ACS Catal. 2015, 5, 5077−5088.
(f) Kumar, A.; Gupta, A. K.; Devi, M.; Gonsalves, K. E.; Pradeep, C.
P. Engineering Multifunctionality in Hybrid Polyoxometalates:
Aromatic Sulfonium Octamolybdates as Excellent Photochromic
Materials and Self-Separating Catalysts for Epoxidation. Inorg.
Chem. 2017, 56, 10325−10336. (g) Fareghi-Alamdari, R.;
Hafshejani, S. M.; Taghiyar, H.; Yadollahi, B.; Farsani, M. R.
Recyclable, Green and Efficient Epoxidation of Olefins in Water with
Hydrogen Peroxide Catalyzed by Polyoxometalate Nanocapsule.
Catal. Commun. 2016, 78, 64−67.
(2) (a) Wong, C. T. T.; Lam, H. Y.; Li, X. C. Effective Synthesis of
Kynurenine-Containing Peptides via On-Resin Ozonolysis of
Tryptophan Residues: Synthesis of Cyclomontanin B. Org. Biomol.
Chem. 2013, 11, 7616−7620. (b) Brown, B. A.; Veinot, J. G. C.
Synthesis of Dibromoolefins via a Tandem Ozonolysis-Dibromoolefi-
nation Reaction. Tetrahedron Lett. 2013, 54, 792−795. (c) Kulcitki,
V.; Bourdelais, A.; Schuster, T.; Baden, D. Synthesis of a
Functionalized Furan via Ozonolysis-Further Confirmation of the
Criegee Mechanism. Tetrahedron Lett. 2010, 51, 4079−4081.
(3) (a) Gonzalez-de-Castro, A.; Xiao, J. L. Green and Efficient: Iron-
Catalyzed Selective Oxidation of Olefins to Carbonyls with O2. J. Am.
Chem. Soc. 2015, 137, 8206−8218. (b) Singh, F. V.; Milagre, H. M. S.;
Eberlin, M. N.; Stefani, H. A. Synthesis of Benzophenones from
Geminal Biaryl Ethenes Using m-Chloroperbenzoic Acid. Tetrahedron
Lett. 2009, 50, 2312−2316. (c) Miyamoto, K.; Tada, N.; Ochiai, M.
Activated Iodosylbenzene Monomer as an Ozone Equivalent:
(7) (a) Rauser, M.; Eckert, R.; Gerbershagen, M.; Niggemann, M.
Catalyst Free Reductive Coupling of Aromatic and Aliphatic Nitro
Compounds with Organohalides. Angew. Chem., Int. Ed. 2019, 58,
6713−6717. (b) Wu, J. J.; Grant, P. S.; Li, X. B.; Noble, A.; Aggarwal,
V. K. Catalyst-Free Deaminative Functionalizations of Primary
Amines by Photoinduced Single-Electron Transfer. Angew. Chem.,
D
Org. Lett. XXXX, XXX, XXX−XXX