Chemistry - An Asian Journal
10.1002/asia.202000142
FULL PAPER
4
(
7.8 (CH
NCH-Py-H
coordinated), -6.3 (N-CH), -27.2 (CH
2
-Py), 25.6 (CH
NCH-Py-Hβ′), 8.4 (NCH-Py-H
-CH -Py), -40.8 (NCH-Py-CH
2
-Py-H
β
, CH
2
-Py-Hβ′), 18.4 (CH
2
-Py-H
γ
), 13.8
-Py-Fe-
).
TKP gratefully acknowledges the Council of Scientific and
Industrial Research (CSIR), India for the financial support
β
,
γ
), -5.0 (CH
3
-CH
2
3
2
3
(
Project No. 01(2926)/18/EMR-II). SB thanks CSIR for research
fellowships. RS acknowledges SERB (Project:
YSS/2015/001741) for the Young Scientist Project.
2
Reaction of Iron(II)-Benzilate Complexes with O and Analysis of
Organic Products. For a stoichiometric reaction, solid complex (0.02
mmol) was dissolved in dry acetonitrile (15 mL) under nitrogen
atmosphere. Pure O
2
was passed through the solution, and the mixture
Keywords: N-ligand • iron • benzilate • dioxygen • oxidation
was stirred at room temperature, during which the initial light yellow
solution slowly turned light orange. The solution was concentrated and
the residue was treated with 2 M HCl (10 mL). The organic products were
then extracted with diethyl ether (3 × 20 mL) and dried over anhydrous
sodium sulfate. The organic layer was filtered and evaporated to dryness.
The products were analyzed by 1H NMR and GC-MS without further
purification. Quantification of the products were done by using 1,3,5-
trimethoxy benzene and naphthalene as internal standards for 1H NMR
and GC-MS, respectively.
[
1]
2]
(a) R. P. Hausinger, Crit. Rev. Biochem. Mol. Biol. 2004, 39, 21-68; (b)
M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Jr., Chem. Rev. 2004,
104, 939-986; (c) T. D. H. Bugg, S. Ramaswamy, Curr. Opin. Chem.
Biol. 2008, 12, 134-140; (d) P. C. A. Bruijnincx, G. van Koten, R. J. M.
K. Gebbink, Chem. Soc. Rev. 2008, 37, 2716-2744; (e) E. G. Kovaleva,
J. D. Lipscomb, Nat. Chem. Biol. 2008, 4, 186-193; (f) K. Ray, F. F.
Pfaff, B. Wang, W. Nam, J. Am. Chem. Soc. 2014, 136, 13942-13958.
(a) E. L. Hegg, L. Que, Jr., Eur. J. Biochem. 1997, 250, 625-629; (b) G.
D. Straganz, B. Nidetzky, ChemBioChem 2006, 7, 1536-1548; (c) C.
Loenarz, C. J. Schofield, Nat. Chem. Biol. 2008, 4, 152-156.
Reactions of Iron(II) Complexes with Substrates. The iron(II) benzilate
complex (0.02 mmol) were dissolved in dioxygen-saturated organic
solvent under a nitrogen atmosphere. Substarte was added to the
solution and was allowed to stir at room temperature for 2 h. After
oxidation, the solvent was removed under reduced pressure and the iron
complex was decomposed by addition of 3 M HCl solution (10 mL). The
organic products were extracted by either diethyl ether or chloroform (3 ×
[
[
[
3]
4]
S. Martinez, R. P. Hausinger, J. Biol. Chem. 2015, 290, 20702-20711.
L. V. Liu, C. B. Bell, III, S. D. Wong, S. A. Wilson, Y. Kwak, M. S. Chow,
J. Zhao, K. O. Hodgson, B. Hedman, E. I. Solomon, Proc. Natl. Acad.
Sci. U. S. A. 2010, 107, 22419-22424, S22419/22411-S22419/22413.
J. Rittle, M. T. Green, Science 2010, 330, 933-937.
15 mL), and the organic layer was dried over anhydrous sodium sulfate.
[
[
5]
6]
After removal of the solvent, organic products were analyzed by GC-MS
D. Galonić Fujimori, E. W. Barr, M. L. Matthews, G. M. Koch, J. R.
Yonce, C. T. Walsh, J. M. Bollinger, Jr., C. Krebs, P. J. Riggs-Gelasco,
J. Am. Chem. Soc. 2007, 129, 13408-13409.
1
and H NMR spectroscopy. For reactions with alkenes, the products were
analyzed by GC-MS spectroscopy. Quantification of the organic products
by NMR was done by comparing the peak area of four aromatic ortho
protons (7.81 ppm) of benzophenone. For GC analyses, naphthalene
was used as an internal standard and the products were identified by
comparison of their GC retention times and GC-MS with those of
authentic compounds. 1H NMR Data: Benzophenone: δ 7.81 (d, 4H),
[
[
7]
8]
9]
(a) J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, Jr., C. Krebs,
Biochemistry 2003, 42, 7497-7508; (b) D. A. Proshlyakov, T. F.
Henshaw, G. R. Monterosso, M. J. Ryle, R. P. Hausinger, J. Am. Chem.
Soc. 2004, 126, 1022-1023.
(a) M. L. Matthews, C. M. Krest, E. W. Barr, F. H. Vaillancourt, C. T.
Walsh, M. T. Green, C. Krebs, J. M. Bollinger, Jr., Biochemistry 2009,
7
2
.59 (t, 2H), 7.48 (t, 4H), 4- bromobenzoic acid: δ 7.95 (d, 2H), 7.65 (d,
H). Methyl phenyl sulfone: δ 7.94 (d, 2H), 7.61 (m, 3H), 3.10 (s, 3H).
48, 4331-4343; (b) J. M. Bollinger, Jr., W.-c. Chang, M. L. Matthews, R.
J. Martinie, A. K. Boal, C. Krebs, RSC Metallobiol. 2015, 3, 95-122.
A. Karlsson, J. V. Parales, R. E. Parales, D. T. Gibson, H. Eklund, S.
Ramaswamy, Science 2003, 299, 1039-1042.
Control Experiments. For control experiments, iron(II) perchlorate was
allowed to react with O in the presence of external substrate. The
[
[
2
reaction was carried out following the same procedure mentioned above
except that iron(II) perchlorate hexahydrate (0.01 mmol) was used
instead of iron(II) benzilate complex. No oxidized product derived from
organic substrates was observed in any of the experiments. In a different
set of control experiments, iron(II) perchlorate hexahydrate and
monoanionic benzilate (benzilic acid in the presence of 1 equiv. of
10] (a) S. Hong, Y.-M. Lee, W. Shin, S. Fukuzumi, W. Nam, J. Am. Chem.
Soc. 2009, 131, 13910-13911; (b) A. Thibon, J. England, M. Martinho,
V. G. Young, Jr., J. R. Frisch, R. Guillot, J.-J. Girerd, E. Münck, L. Que,
Jr., F. Banse, Angew. Chem. Int. Ed. 2008, 47, 7064-7067.
[
11] (a) F. Namuswe, T. Hayashi, Y. Jiang, G. D. Kasper, A. A. N. Sarjeant,
P. Moënne-Loccoz, D. P. Goldberg, J. Am. Chem. Soc. 2010, 132, 157-
triethylamine) was used that resulted
a trace amount (<5%) of
167; (b) A. Franke, C. Fertinger, R. van Eldik, Chemistry – A European
benzophenone. However, substrate oxidation was not observed in the
above reaction.
Journal 2012, 18, 6935-6949; (c) F. Namuswe, G. D. Kasper, A. A. N.
Sarjeant, T. Hayashi, C. M. Krest, M. T. Green, P. Moënne-Loccoz, D.
P. Goldberg, J. Am. Cherm. Soc. 2008, 130, 14189-14200; (d) N.
Lehnert, R. Y. N. Ho, L. Que, Jr., E. I. Solomon, J. Am. Chem. Soc.
2001, 123, 8271-8290.
X-ray Crystallographic Data Collection, Refinement and Solution of
the Structure. X-ray single-crystal data for the complexes were collected
using Mo Kα (λ = 0.7107 Å) radiation on a SMART-APEX diffractometer
equipped with CCD area detector. Details of the data collection and
structure refinement are provided in (Table S1). Data collection, data
reduction, structure solution and refinement were carried out using the
software package of APEX II.[25] The structure was solved by intrinsic
methods and subsequent Fourier analyses and refined by the full-matrix
least-squares method basedon F2 with all observed reflections.[26] The
non-hydrogen atoms were treated anisotropically. The disordered carbon
atoms were treated isotropically. CCDC 1960560, 1960559, 1960558,
and 1960561 contain the supplementary crystallographic data for 1, 2, 3
and 4, respectively. The data can be obtained free of charge from the
[12] (a) W. Nam, Acc. Chem. Res. 2015, 48, 2415-2423; (b) L. Que, Jr., Acc.
Chem. Res. 2007, 40, 493-500; (c) A. R. McDonald, L. Que, Jr., Coord.
Chem. Rev. 2013, 257, 414-428; (d) W. Nam, Y.-M. Lee, S. Fukuzumi,
Acc. Chem. Res. 2014, 47, 1146-1154; (e) X. Engelmann, I. M.-Pérez,
K. Ray, Angew. Chem. Int. Ed. 2016, 55, 7632-7649; (f) J. England, M.
Martinho, E. R. Farquhar, J. R. Frisch, E. L. Bominaar, E. Münck, L.
Que, Angew. Chem. Int. Ed. 2009, 48, 3622-3626; (g) A. N. Biswas, M.
Puri, K. K. Meier, W. N. Oloo, G. T. Rohde, E. L. Bominaar, E. Münck, L.
Que, Jr., J. Am. Chem. Soc. 2015, 137, 2428-2431; (h) M. Puri, L. Que,
Jr., Acc. Chem. Res. 2015, 48, 2443-2452; (i) S. H. Bae, M. S. Seo, Y.-
M. Lee, K.-B. Cho, W.-S. Kim, W. Nam, Angew. Chem., Int. Ed. 2016,
55, 8027-8031.
Data
Centre
via
[13] (a) H. Hirao, D. Kumar, L. Que, Jr., S. Shaik, J. Am. Chem. Soc. 2006,
128, 8590-8606; (b )E. J. Klinker, S. Shaik, H. Hirao, L. Que, Jr., Angew.
Chem. Int. Ed. 2009, 48, 1291-1295.
[
14] (a) S. Sahu, L. R. Widger, M. G. Quesne, S. P. de Visser, H.
Matsumura, P. Moꢀnne-Loccoz, M. A. Siegler, D. P. Goldberg, J. Am.
Acknowledgements
8
This article is protected by copyright. All rights reserved.