Page 5 of 7
New Journal of Chemistry
Please do not adjust margins
Journal Name
time of 48 h (8a−9a of table 2). Finally, CoCu@NC2 was applied
ARTICLE
1
2
3
4
5
6
7
8
Notes and references
DOI: 10.1039/D0NJ00172D
to catalyze the aerobic esterification of benzyl alcohol with
other aliphatic alcohols, including ethanol, propanol and
butanol, the benzyl alcohol showed good to high conversions
with considerable selectivity under the base-free condition
(10a−12a of table 2). However, owing to the steric effect of
fatty carbon chain, the long-chain alcohols have poor
conversions and selectivity relative to methyl alcohol. These
examples demonstrate that CoCu@NC2 is a promising catalyst
for oxidative esterification of a variety alcohols to esters.
Obviously, the catalytic activity and selectivity of CoCu@NC2
are superior to those obtained in base-containing systems
(Table S1, entries 1-5). It is also higher or comparable to those
of previously reported heterogeneous catalysts for oxidative
esterification in base-free systems (Table S1, entries 6-10).
For the durability test, the catalyst CoCu@NC2 was
centrifuged, washed, and thermal treated at 500 °C, then
reused in the next run. The catalyst showed a stable
recyclability, the conversion was still up to 87% with selectivity
maintained at 98% after five runs (Figure S6). The XRD pattern
for the recovered catalyst was similar to that of the fresh one
(Figure S7), and the ICP-AES analysis of the recycled catalyst
showed negligible leaching of either Co or Cu, indicating a
heterogeneous nature of CoCu@NC2.
1
2
3
4
5
6
K. Ghosh, M. A. Iqubal, R. A. Molla, A. Mishra, S. M. Islam,
Catal. Sci. Technol., 2015, 5, 1606-1622.
K. R. Balinge, A. G. Khiratkar, P. R. Bhagat, J. Mol. Liq., 2017,
242, 1085-1095.
M. Liu, Z. Zhang, H. Liu, Z. Xie, Q. Mei, B. Han, Sci. Adv., 2018,
4, eaas9319.
W. Zhong, H. Liu, C. Bai, S. Liao, Y. Li, ACS Catal., 2015, 5 ,
1850-1856.
M. Hatano, Y. Furuya, T. Shimmura, K. Moriyama, S. Kamiya,
T. Maki, K. Ishihara, Org. Lett. 2010, 13, 426-429.
N. Iranpoor, H. Firouzabadi, D. Khalili, Org. Biomol. Chem.,
2010, 8, 4436-4443.
J. Otera, Acc. Chem. Res., 2004, 37, 288-296.
N. Nowrouzi, A. M. Mehranpour, J. A. Rad, Tetrahedron,
2010, 66, 9596-9601.
W. Zhu, Z. Wu, G. S. Foo, X. Gao, M. Zhou, H. Li, Nat.
Commun., 2017, 8, 1-7.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
7
8
9
10 P. Wu, Y. Wu, L. Chen, J. He, H. Li, Chem. Eng. J., 2020, 380,
122526.
11 P. Wu, W. Zhu, B. Dai, Y. Chao, C. Li, H. Li, H. Li, Chem. Eng. J.,
2016, 301, 123-131.
12 N. Li, S. Shang, L. Wang, J. Niu, Y. Lv, S. Gao, Chin. J. Catal.,
2018, 39, 1249-1257.
13 Y. X. Zhou, Y. Z. Chen, L. Cao, J. Lu, H. L. Jiang, Chem.
Commun., 2015, 51, 8292-8295.
14 R. Ray, R. D. Jana, M. Bhadra, D. Maiti, G. K. Lahiri, Chem. -
Eur. J., 2014, 20, 15618-15624.
15 R. V. Jagadeesh, H. Junge, M. M. Pohl, J. Radnik, A. Brückner,
M. Beller, J. Am. Chem. Soc., 2013, 135, 10776-10782.
16 F. Mao, Z. Qi, H. Fan, D. Sui, R. Chen, J. Huang, RSC Adv.,
2017, 7, 1498-1503.
17 X. Tong, Z. Liu, L. Yu, Y. Li, Chem. Commun., 2015, 51, 3674-
3677.
18 L. Wang, J. Li, W. Dai, Y. Lv, Y. Zhang, S. Gao, Green Chem.,
2014, 16, 2164-2173.
19 C. Liu, J. Wang, Y. Li, A. Lei, Angew. Chem., Int. Ed. 2011, 50,
5144-5148.
20 D. Liu, P. Yang, H. Zhang, M. Liu, W. Zhang, D. Xu, J. Gao,
Green Chem., 2019, 21, 2129-2137.
21 T. Zhang, D. Zhang, X. Han, T. Dong, X. Guo, C. Song, Z. Zhao,
J. Am. Chem. Soc., 2018, 140, 16936-16940.
22 D. Xu, Y. Pan, D. Zhang, Q. Fang, S. Qiu, CrystEngComm,
2017, 19, 6612-6619.
23 W. Feng, M. Liu, J. Liu, F. Wang, Catal. Sci. Technol., 2018, 8,
4900-4906.
24 P. Zhang, L. Wang, S. Yang, J. A. Schott, S. M. Mahurin, S. Dai,
Nat. Commun., 2017, 8, 15020.
25 Z. Y. Wu, X. X. Xu, B. C. Hu, H. W. Liang, Y. Lin, L. F. Chen, S. H.
Yu, Angew. Chem., Int. Ed., 2015, 54, 8179-8183.
26 H. Zhang, Z. Ma, J. Duan, G. Liu, T. Wang, K. Wu, ACS nano,
2015, 10, 684-694.
27 R. V. Jagadeesh, T. Stemmler, A. E. Surkus, M. Bauer, M. M.
Pohl, J. Radnik, M. Beller, Nat. Protoc., 2015, 10, 916.
28 T. Cheng, H. Yu, F. Peng, H. Wang, B. Zhang, D. Su, Catal. Sci.
Technol., 2016, 6, 1007-1015.
29 H. Luo, L. Wang, S. Shang, J. Niu, S. Gao, Commun. Chem.,
2019, 2, 17.
Conclusions
In conclusion, we have developed Co and Cu co-embedded N-
doped carbon catalysts (CoCu@NCn) based on a facile one-step
carbonization strategy. With both Co and Cu nanoparticles
embedded in a single NC support, synergetic active sites
produced in the catalyst CoCu@NC2, and therefore caused a
significant increase in catalytic activity and selectivity for
aerobic oxidative esterification of alcohols to esters. N-doping
was also demonstrated to be essential to form highly active
catalysts with abundant basic sites that endow the oxidative
esterification proceeded under base-free conditions. The
CoCu@NC2 exhibited remarkable catalytic performance under
mild conditions for a wide variety of substrates and can be
reusable for 5 times. The present strategy may be suitable for
the exploration of more metal-based catalysts with enhanced
activity and durability that can be applied in various catalytic
processes.
Conflicts of interest
There are no conflicts to declare
30 H. Su, K. X. Zhang, B. Zhang, H. H. Wang, Q. Y. Yu, X. H. Li, J. S.
Chen, J. Am. Chem. Soc., 2017, 139, 811-818.
31 H. Zhou, S. Hong, H. Zhang, Y. Chen, H. Xu, X. Wang, Y. Liu,
Appl. Catal., B, 2019, 117767.
32 C. Zhou, Z. Tan, H. Jiang, M. Zhang, Green chem., 2018, 20,
1992-1997.
Acknowledgements
The authors thank the National Natural Science Foundation of
China (no. 21978115). The authors were also supported by the
central laboratory of School of Chemical and Material
Engineering.
33 D. Nandan, G. Zoppellaro, I. Medřík, C. Aparicio, P. Kumar, M.
Petr, R. Zbořil, Green chem., 2018, 20, 3542-3556.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins