X. Fu et al. / Materials Research Bulletin 45 (2010) 1218–1223
1223
References
may be attributed to their hollow nature and larger BET specific
surface areas. These results demonstrated that the -MnO2 hollow
g
[1] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature
453 (2008) 638.
[2] H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu,
J. Am. Chem. Soc. 131 (2009) 4078.
nanospheres can be used as an efficient catalyst for the aerobic
oxidation of alcohols.
[3] Z.Q. Li, Y. Ding, Y.J. Xiong, Q. Yang, Y. Xie, Chem. Commun. 7 (2005) 918.
[4] X.F. Shen, Y.S. Ding, J. Liu, J. Cai, K. Laubernds, R.P. Zerger, A. Vasiliev, M. Aindow,
S.L. Suib, Adv. Mater. 17 (2005) 805.
4. Conclusions
[5] B.X. Li, G.X. Rong, Y. Xie, L.F. Huang, C.Q. Feng, Inorg. Chem. 45 (2006) 6404.
[6] J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Adv. Mater. 20
(2008) 452.
[7] J.M. Shin, R. Md Anisur, M.K. Ko, G.H. Im, J.H. Lee, I.S. Lee, Angew. Chem. Int. Ed. 48
(2009) 321.
[8] P. Yu, X. Zhang, D.L. Wang, L. Wang, Y.W. Ma, Cryst. Growth Des. 9 (2009) 528.
[9] X. Wang, Y.D. Li, Chem. Commun. 7 (2002) 764.
[10] N. Wang, Y. Gao, J. Gong, X.Y. Ma, X.L. Zhang, Y.H. Guo, L.Y. Qu, Eur. J. Inorg. Chem.
24 (2008) 3827.
[11] Y.S. Ding, X.F. Shen, S. Gomez, H. Luo, M. Aindow, S.L. Suib, Adv. Funct. Mater. 16
(2006) 549.
In summary, this is the first reported synthesis of
g-MnO2
hollow nanospheres by a 1-h 2-step process without using any
templates, catalysts, and hydrothermal processes, which is the
shortest reaction time reported in the literature to date. This
process consisted of the reaction between MnSO4 and KMnO4 in
aqueous solution in the presence of an excess amount of Mn2+ at
room temperature for 0.5 h, followed by an aging of the solution at
60 8C for another 0.5 h. The
g-MnO2 hollow nanospheres with a
diameter of about 300–800 nm consisted of nanorods with
diameter about 8–10 nm and length about 50–100 nm. The excess
amount of the Mn2+ in solution was found to be the key factor in
[12] W.N. Li, J.K. Yuan, X.F. Shen, S. Gomez-Mower, L.P. Xu, S. Sithambaram, M. Aindow,
S.L. Suib, Adv. Funct. Mater. 16 (2006) 1247.
[13] M. Xu, L. Kong, W. Zhou, H. Li, J. Phys. Chem. C 111 (2007) 19141.
[14] J.C. Villegas, L.J. Garces, S. Gomez, J.P. Durand, S.L. Suib, Chem. Mater. 17 (2005)
1910.
[15] X. Wang, Y.D. Li, Chem. Eur. J. 9 (2003) 300.
[16] X.F. Shen, Y.S. Ding, J.C. Hanson, M. Aindow, S.L. Suib, J. Am. Chem. Soc. 128 (2006)
4570.
[17] D. Portehault, S. Cassaignon, E. Baudrin, J.P. Jolivet, Chem. Mater. 19 (2007) 5410.
[18] M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, J. Am. Chem. Soc.
126 (2004) 14943.
[19] R.L. Penn, J.J. Erbs, D.M. Gulliver, J. Cryst. Growth 293 (2006) 1.
[20] W.Z. Ostwald, Phys. Chem. 34 (1900) 495.
the formation of the
formation mechanism of the
60 8C in the presence of the excess amount of Mn2+ in solution
followed the ‘‘Ostward ripening’’ process. The as-synthesized
g
-MnO2 hollow nanospheres. The fast
g
-MnO2 hollow nanospheres at
g
-
MnO2 hollow nanospheres showed high catalytic activity and
selectivity in aerobic oxidation of various alcohols because of their
larger BET specific surface area. This facile 1-h 2-step synthetic
process provides a new perspective of the fast synthesis of
hollow nanospheres.
g-MnO2
[21] Y.C. Son, V.D. Makwana, A.R. Howell, S.L. Suib, Angew. Chem. Int. Ed. 40 (2001)
4280.