106
G. Bilis et al. / Catalysis Today 157 (2010) 101–106
catalytic performance of the catalyst when CH3CN is used as solvent
compared with the cases of MeOH and CH2Cl2.
[11] A.L. Feig, S.J. Lippard, Chem. Rev. 94 (1994) 759–805.
[12] C. He, Y. Mishina, Curr. Opin. Chem. Biol. 8 (2004) 201–208.
[13] J.-U. Rohde, M.R. Bukowski, L. Que, J. Curr. Opin. Chem. Biol. 7 (2003) 674–682.
[14] K. Chen, L. Que, Chem. Commun. 15 (1999) 1375–1376.
[15] M. Costas, A.K. Tipton, K. Chen, D.-H. Jo, L. Que, J. Am. Chem. Soc. 123 (2001)
6722–6723.
4. Conclusion
[16] K. Chen, M. Costas, J. Kim, A.K. Tipton, L. Que, J. Am. Chem. Soc. 124 (2002)
3026–3035.
[17] P.D. Oldenburg, A.A. Shteinman, L. Que, J. Am. Chem. Soc. 127 (2005)
15672–15673.
[18] C.P. Horwitz, D.R. Fooksman, L.D. Vuocolo, S.W. Gordon-Wylie, N.J. Cox, J.T.
Collins, J. Am. Chem. Soc. 120 (1998) 4867–4868.
[19] J.T. Collins, Acc. Chem. Res. 35 (2001) 782–790.
[20] J.M. Rowland, M. Olmstead, P.K. Mascharak, Inorg. Chem. 40 (2001) 2810–2817.
[21] M. Klopstra, G. Roelfes, R. Hage, R.M. Kellog, B.L. Feringa, Eur. J. Inorg. Chem. 4
(2004) 846–856.
[22] F.G. Gelalcha, G. Anilkumar, M.K. Tse, A. Brücknerc, M. Beller, Chem. Eur. J. 14
(2008) 7687–7698.
[23] L. Que Jr., R.Y.N. Ho, Chem. Rev. 96 (1996) 2607–2624.
[24] M. Costas, K. Chen, L. Que Jr., Coord. Chem. Rev. 200–202 (2000) 517–544.
[25] S. Tanase, E. Bouwman, Adv. Inorg. Chem. 58 (2006) 29–75.
[26] M. Sono, M.P. Roach, M.P. Coulter, J.H. Dawson, Chem. Rev. 96 (1996)
2841–2887.
[27] P.R. Ortiz de Montellano, Acc. Chem. Res. 31 (1998) 543–549.
[28] G. Roelf, M. Luben, R. Hage, L. Que, B.L. Feringa, Chem. Eur. J. 6(2000) 2152–2159.
[29] J.H. Clark, Green Chem. 1 (1999) 1–8.
In CH3CN both the homogeneous and heterogeneous catalysts
were efficient in alkene oxidations providing significant yields. In
cyclohexane oxidation an alcohol/ketone (A/K) ratio of 1.75 and
1.60 was found by LFeIIICl and LFeIII·SiO2 catalysts respectively.
UV–vis kinetic data suggest formation and concomitant consump-
tion of a LFeIII–OOH species. EPR data show that in CH3CN, low-spin
FeIII (S = 1/2) centers are formed, which are responsible for the cat-
alytic activity. Under the catalytic conditions used, the LFe·SiO2 was
much more stable than the homogeneous LFe catalyst. The recycled
LFe·SiO2 catalyst (a) was able to activate H2O2 in to the new cat-
alytic reaction, (b) when tested for up to 5 re-uses, showed a total
yield loss ∼4% per use, providing the same distribution of oxidation
products.
Appendix A. Supplementary data
[30] M.H. Valkenberg, W.F. Holderich, Catal. Rev. 44 (2002) 321–374.
[31] A. Dhakshinamoorthy, K. Pitchumani, Tetrahedron 62 (2006) 9911–9918.
[32] K.C. Gupta, A.K. Sutar, C.-C. Lin, Coord. Chem. Rev. 253 (2009) 1926–1946.
[33] M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, J. Mol.
Catal. A: Chem. 198 (2003) 231–240.
Supplementary data associated with this article can be found, in
[34] Ch. Vartzouma, E. Evaggellou, Y. Sanakis, N. Hadjiliadis, M. Louloudi, J. Mol.
Catal. A: Chem. 263 (2007) 77–85.
References
[35] G. Grigoropoulou, K.C. Christoforidis, M. Louloudi, Y. Deligiannakis, Langmuir
23 (2007) 10407–10418.
[36] F. Gozzo, J. Mol. Catal. A: Chem. 171 (2001) 1–22.
[1] M. Merkx, D.A. Kopp, M.H. Sazinsky, J.L. Blazyk, J. Muller, S.J. Lippard, Angew.
Chem. Int. Ed. 40 (2001) 2782–2807.
[2] B.J. Wallar, J.D. Lipscomb, Chem. Rev. 96 (1996) 2625–2657.
[3] S.C. Pulver, W.A. Froland, J.D. Lipscomb, E.I. Solomon, J. Am. Chem. Soc. 119
(1997) 387–395.
[4] M.D. Wolfe, J.V. Parales, D.T. Gibson, J.D. Lipscomb, J. Biol. Chem. 276 (2001)
1945–1953.
[37] W. Xue, J.C. Zhang, Y.J. Wang, Catal. Commun. 6 (2005) 431–436.
[38] R.X. Wang, W.Z. Jiao, B.J. Gao, Appl. Surf. Sci. 255 (2009) 7766–7772.
[39] G.C. Silva, G.L. Parrilha, N.M.F. Carvalho, V. Drago, C. Fernandes, A. Horn Jr.,
O.A.C. Antunes, Catal. Today 133–135 (2008) 684–688.
[40] G. Roelfes, M. Lubben, K. Chen, R.Y.N. Ho, A. Meetsma, S. Genseberger, R.M.
Hermant, R. Hage, S.K. Mandal, V.G. Young, Y. Zang, H. Kooijman, A.L. Spek, L.
Que, B.L. Feringa, Inorg. Chem. 38 (1999) 1929–1936.
[5] A. Karlsson, J.V. Parales, R.E. Parales, D.T. Gibson, H. Eklund, S. Ramaswamy,
Science 299 (2003) 1039–1042.
[6] R.M. Burger, Chem. Rev. 98 (1998) 1153–1169.
[41] D.P.E. Dickson, F.J. Berry, Mossbauer Spectroscopy, Cambridge University Press,
1996.
[42] J. Peisach, W.E. Blumberg, S. Ogawa, E.A. Rachmilewitz, R. Oltzik, J. Biol. Chem.
246 (1971) 3342.
[43] M.P. Jensen, S.J. Lange, M.P. Mehn, L. Que, J. Am. Chem. Soc. 125 (2003)
2113–2128.
[44] L. Duelund, H. Toftlund, Spectrochim. Acta A 56 (2000) 331–340.
[7] E.I. Solomon, T.C. Brunold, M.I. Davis, J.N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese,
A.J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 100 (2000) 235–349.
[8] C.A. Claussen, E.C. Long, Chem. Rev. 99 (1999) 2797–2816.
[9] L. Que, W.B. Tolman, Bio-coordination chemistry, in: J.A. McCleverty, T.J. Meyer
(Eds.), Comprehensive Coordination Chemistry II, vol. 8, Elsevier, Oxford, UK,
2004.
[10] E.Y. Tshuva, S.J. Lippard, Chem. Rev. 104 (2004) 987–1012.