1852
M. Hatsuda, M. Seki / Tetrahedron Letters 46 (2005) 1849–1853
Table 4. Comparison of the present cyanation employing Pd/C with those catalyzed by homogeneous Pd catalystsa
O
O
O
Zn(CN)2 (0.6 equiv)
Pd Catalyst, Additive
H
CN
OH
Br
N
N
N
+
O
O
O
DMA
OH
OH
1j
2j
3
b
Assayyield (%)
EntryPd Castta(lymol %)
Additive (equiv)
Temp. (
°C)
Period (h)
Conv.b (%)
2j:3b
1
2
3
Pd/Cc (4)
PPh3 (0.16), Zn (0.6), Br2 (0.2)
PPh3 (0.2), Zn (0.56)
PPh3 (0.16), Zn (0.6), Br2 (0.2)
115
150
115
4
2
3
100
82
91
98/2
75/25
98/2
d
Pd(OAc)2 (5)
Pd(OAc)2 (4)
—
87
100
a The compound 2j obtained has been fullycharacterized byIR, NMR, and Mass spectra.
b Determined byHPLC.
c Pd/C was purchased from Degussa Japan Co., Ltd.5
d Not determined.
Harn, N. K.; Pagh, L. M.; Wepsiec, J. P. J. Org. Chem.
1998, 63, 8224–8228; (b) Maligres, P. E.; Waters, M. S.;
Fleitz, F.; Askin, D. Tetrahedron Lett. 1999, 40, 8193–
8195; (c) Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000,
41, 3271–3273; (d) Sundermeier, M.; Zapf, A.; Mutyala,
S.; Baumann, W.; Sans, J.; Weiss, S.; Beller, M. Chem.
Eur. J. 2003, 9, 1828–1836; (e) Sundermerier, M.; Zapf, A.;
Beller, M. Angew. Chem., Int. Ed. 2003, 42, 1661–1664; (f)
Chidambaram, R. Tetrahedron Lett. 2004, 45, 1441–1444;
(g) Yang, C.; Williams, J. M. Org. Lett. 2004, 6, 2837–
2840; (h) Marcantonio, K. M.; Frey, L. F.; Liu, Y.; Chen,
Y.; Strine, J.; Phenix, B.; Wallace, D. J.; Chen, C.-Y. Org.
Lett. 2004, 6, 3723–3725; (i) Shareina, T.; Zapf, A.; Beller,
M. Chem. Commun. 2004, 1388–1389; (j) For a review, see:
Sundermerier, M.; Zapf, A.; Beller, M. Eur. J. Inorg.
Chem. 2003, 3513–3526.
in conjunction with the addition of Zn dust, ZnBr2, and
PPh3 thus appears to be superior to the protocols
employing homogeneous Pd catalysts.
Elucidation of the precise mechanism of the present cya-
nation needs further investigation. Nonetheless, the use
of the heterogeneous Pd/C catalyst has an advantage in
that Pd metal is embedded and finelydispersed on the
charcoal matrix at least in the initial stage of the reac-
tion,8 which mayassure the formation of monomeric
or dimeric Pd–phosphine complex without aggregating
to inactive Pd black.9 The recoveryof Pd was conducted
in the reaction of 1a to 2a byinitial oxidation of PPh 3.10
Air bubbling of the reaction mixture at 60 °C followed
bysimple filtration at 25 °C led to virtuallycomplete
recoveryof Pd (99% yield). Although the recovered cat-
alyst was not reused as such, it could be employed in the
subsequent cyanation without any problems after sub-
jecting to usual recoveryprocess involving combustion.
3. The reported cyanation procedures need expensive and/or
hazardous Pd catalyst, ligand and/or additive: Anderson
approach:2a Pd(PPh3)4, CuI; Maligres approach:2b Pd2
(dba)3, dppf; Jin approach:2c Pd2(dba)3, dppf;
Beller approach:2d dpppe, TMEDA; Beller approach:2e
dpppe, TMSCN; Chidambaram approach:2f Pd2(dba)3,
dppf; Yang approach:2g Pd2(dba)3, Bu3SnCl; t-Bu3P;
Marcantonio approach:2h P(o-tol)3; Beller approach:2i
dppf.
4. (a) Shimizu, T.; Seki, M. Tetrahedron Lett. 2000, 41, 5099–
5101; (b) Shimizu, T.; Seki, M. Tetrahedron Lett. 2001, 42,
429–432; (c) Shimizu, T.; Seki, M. Tetrahedron Lett. 2002,
43, 1039–1042; (d) Mori, Y.; Seki, M. Heterocycles 2002,
58, 125–126; (e) Mori, Y.; Seki, M. J. Org. Chem. 2003, 68,
1571–1574; (f) Seki, M.; Hatsuda, M.; Mori, Y.; Yamada,
S. Tetrahedron Lett. 2002, 43, 3269–3272; (g) Seki, M.;
Mori, Y.; Hatsuda, M.; Yamada, S. J. Org. Chem. 2002,
67, 5527–5536; (h) Seki, M.; Shimizu, T.; Inubushi, K.
Synthesis 2002, 361–364; (i) Mori, Y.; Kimura, M.; Seki,
M. Synthesis 2003, 2311–2316; (j) Seki, M.; Kimura, M.;
Hatsuda, M.; Yoshida, S.; Shimizu, T. Tetrahedron Lett.
2003, 44, 8905–8907; (k) Kimura, M.; Seki, M. Tetrahe-
dron Lett. 2004, 45, 1635–1637; (l) Kimura, M.; Seki, M.
Tetrahedron Lett. 2004, 45, 3219–3223; (m) For a review,
see: Seki, M.; Kimura, M. J. Syn. Org. Chem. Jpn. 2004,
62, 882–894.
In conclusion, a practical cyanation of aryl bromides
employing heterogeneous Pd/C was worked out by the
use of inexpensive Zn dust, ZnBr2 (in situ generated
from Zn dust and Br2) and PPh3. The present process
is featured byease of operation, high recoveryof Pd,
use of inexpensive phosphine ligand (PPh3) and addi-
tives (Zn dust and ZnBr2), and high reproducibility,
which would permit a highlysustainable and robust
access to multifunctional aryl nitriles, compounds of
great pharmaceutical significance.
Acknowledgements
The authors wish to thank Degussa Japan Co., Ltd. for
disclosing the chemical properties of the Pd/C catalyst.
References and notes
5. Pd/C catalyst employed in this study was purchased from
Degussa Japan Co., Ltd. and has the following chemical
properties: impregnation depth, 200–500 nm (thick shell);
reduction degree, 0–25%; Pd dispersion, 28%; water
content, less than 3 wt %. The catalyst is commercially
available at Degussa Japan Co., Ltd.
6. General procedure for the Pd-catalyzed cyanation: A
reaction vessel was charged with zinc dust (52 mg,
0.8 mmol) and DMA (5.7 mL). The vessel was then briefly
1. (a) Larock, R. C. In Comprehensive Organic Transforma-
tions, 2nd ed.; John Wiley& Sons: New York, 1999; pp
1707–1708; (b) Kleemann, A.; Engel, J.; Kutscher, B.;
Reichert, D. Pharmaceutical substances syntheses, patents,
applications, 4th ed.; Georg Thieme: Stuttgart, 2001.
2. For recently developed Pd-catalyzed cyanation of aryl
halides, see: (a) Anderson, B. A.; Bell, E. C.; Ginah, F. O.;