Organometallics
Article
responses. LC-MS experiments were conducted using an LCMS-8040
LC/MS/MS System (Shimadzu). The mass spectrometer was
operated in positive mode at a collision energy of −20 V. Nuclear
magnetic resonance experiments were conducted using a Spinsolve 43
MHz Benchtop NMR Spectrometer (Magritek) and Fourier trans-
form infrared spectroscopy experiments were conducted using an
ALPHA FT-IR Spectrometer (Bruker).
(4) Khazalpour, S.; Nematollahi, D. Electrochemical and chemical
synthesis of different types of sulfonamide derivatives of N,N-
dimethyl-1,4-benzenediamine using 4-nitroso-N,N-dimethylaniline.
Green Chem. 2015, 17, 3508−3514.
(5) Lapin, E.; Jureviciute, I.; Mazeikiene, R.; Niaura, G.;
̌
̇ ̇
̌
̅
Malinauskas, A. A study of electropolymerization of N,N-dimethylani-
line. Synth. Met. 2010, 160, 1843−1847.
Product Identification. N-Methylcyclohexylamine. Molar mass:
13 g/mol. Yield 40%. IR (neat): 3284 w, 2924 s, 2851 s, 2785 m,
(6) Rasche, A.; Heinze, J. On the σ-dimerization of N,N-dimethyl-p-
1
1
toluidine during anodic oxidationA reinvestigation. Electrochim.
Acta 2008, 53, 3812−3819.
1
m, 542 w, 428 w. H NMR (CDCl with TMS, 43 MHz; Figures S4)
3
(7) Cao, F.; Kim, J.; Bard, A. J. Detection of the Short-Lived Cation
δ : 2.42 (s, 3H, NCH ), 2.49−1.38 (m, br, 12H, NH, CH and 5 ×
H
3
Radical Intermediate in the Electrochemical Oxidation of N,N-
Dimethylaniline by Scanning Electrochemical Microscopy. J. Am.
Chem. Soc. 2014, 136, 18163−18169.
13
CH ). C NMR (CDCl with TMS, 10 MHz; Figures S5) δ : 58.55
2
3
C
(
2
9
CH), 33.62 (NCH ), 33.33 (2 × NCHCH ), 26.39 (CH CH CH ),
3 2 2 2 2
5.09 (2 × CHCH CH ). LC-MS: m/z (relative intensity): 113 (14),
2 2
(8) Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vila, N.
5 (2), 85 (7), 81 (14), 77 (11), 70 (3), 68 (27), 66 (6), 58 (2), 57
Electrochemical Oxidation of Aliphatic Amines and Their Attachment
to Carbon and Metal Surfaces. Langmuir 2004, 20, 8243−8253.
(9) Deinhammer, R. S.; Ho, M.; Anderegg, J. W.; Porter, M. D.
Electrochemical oxidation of amine-containing compounds: a route to
the surface modification of glassy carbon electrodes. Langmuir 1994,
(
20), 56 (13), 55 (1), 45 (5), 43 (100), 39 (13).
Dicyclohexylamine. Molar mass: 181 g/mol. Yield 48%. IR (neat):
1
2
3
with TMS, 43 MHz; Figures S6) δ : 2.50 (m, 2H, 2 × NCH), 2.17−
H
1
3
0
.41 (m, br, 21H, NH, 10 × CH ). C NMR (CDCl with TMS, 10
2
3
1
(
0, 1306−13.
MHz; Figures S7) δ : 53.19 (2 × NCH), 34.65 (4 × NCHCH ),
C
2
10) Steckhan, E. Anodic Oxidation of Nitrogen-Containing
2
6.53 (2 × CH CH CH ), 25.53 (4 × CHCH CH ). LC-MS: m/z
2 2 2 2 2
Compounds. In Organic Electrochemistry; Lund, H., Hammerich, O.,
Eds.; Marcel Dekker: New York, 2001.
(relative intensity): 183 (6), 182 (87), 167 (20), 165 (1), 164 (3),
1
55 (7), 151 (3), 141 (16), 138 (6), 137 (6), 119 (7), 103 (7), 100
(11) Smith, P. J.; Mann, C. K. Electrochemical dealkylation of
(
(
15), 99 (5), 98 (10), 97 (18), 91 (3), 87 (1), 86 (1), 85 (3), 83
100), 82 (4), 80 (3), 75 (3), 73 (9), 59 (3), 55 (5), 45 (3), 30 (5),
aliphatic amines. J. Org. Chem. 1969, 34, 1821−1826.
2
3 (3), 19 (1), 18 (1).
Cyclohexylamine. Molar mass: 99 g/mol. Yield 42%. IR (neat):
366 w, 3278 w, 2924 s, 2854 s, 2750 w, 1606 w, 1460 m, 1370 w,
(12) Barnes, K. K.; Mann, C. K. Electrochemical oxidation of
primary aliphatic amines. J. Org. Chem. 1967, 32, 1474−1479.
(13) Largeron, M.; Neudorffer, A.; Benoit, M.; Fleury, M.-B.
Oxidation of primary aliphatic amines catalyzed by an electro-
generated quinonoid species: A small molecule mimic of amine
oxidases. Proc. Electrochem. Soc. 2003, 2003−12, 185−188.
3
1
1
(
1
CDCl with TMS, 43 MHz; Figures S8) δ : 2.49 (m, br, H, NCH),
3
H
1
3
TMS, 10 MHz; Figures S9) δ : 50.72 (NCH), 37.23 (2 × CHCH ),
(14) Regino, M. C. S.; Brajter-Toth, A. Real time characterization of
catalysis by online electrochemistry/mass spectrometry. Investigation
of quinone electrocatalysis of amine oxidation. Electroanalysis 1999,
C
2
2
6.01 (CH CH CH ), 25.47 (2 × CHCH CH ). LC-MS: m/z
2 2 2 2 2
(
(
relative intensity): 99 (60), 82 (18), 81 (7), 79 (42), 77 (8), 55
26), 54 (14), 53 (26), 45 (7), 43 (100), 40 (8), 39 (10), 27 (8).
1
(
1, 374−379.
15) Torriero, A. A. J.; Shiddiky, M. J. A.; Burgar, I.; Bond, A. M.
ASSOCIATED CONTENT
Supporting Information
Homogeneous electron-transfer reaction between electrochemically
generated ferrocenium ions and amine containing compounds.
Organometallics 2013, 32, 5731−5739.
■
*
S
(16) Torriero, A. A. J., Ed. Electrochemistry in Ionic Liquids. Vol. 1:
Fundamentals. Springer: Switzerland, 2015.
17) Shiddiky, M. J. A.; Torriero, A. A. J.; Zeng, Z.; Spiccia, L.;
(
CVs over the potential region where the Fc oxidation
occurs with the addition of different concentrations of
DCHMA and DCHA, CVs before and after exhaustive
controlled potential electrolysis of Fc in the presence of
DCHMA and DCHA, comparison of experimental and
Bond, A. M. Highly Selective and Sensitive DNA Assay Based on
Electrocatalytic Oxidation of Ferrocene Bearing Zinc(II)-Cyclen
Complexes with Diethylamine. J. Am. Chem. Soc. 2010, 132,
10053−10063.
(18) Gao, Z.-N.; Zhang, J.; Liu, W.-Y. Electrocatalytic oxidation of
N-acetyl-L-cysteine by acetylferrocene at glassy carbon electrode. J.
Electroanal. Chem. 2005, 580, 9−16.
1
13
simulated CVs, H and C NMR spectra of products
(19) Togni, A.; Hayashi, T. Ferrocenes: Homogeneous Catalysis,
Organic Synthesis, Materials Science; VCH: Weinheim, 2006.
(20) Kumar, C. H. V.; Shivananda, K. N.; Jagadeesh, R. V.; Raju, C.
N. Ruthenium complex catalyzed oxidative conversion of aliphatic
amines to carboxylic acids using bromamine-T: Kinetic and
mechanistic study. J. Mol. Catal. A: Chem. 2009, 311, 23−28.
AUTHOR INFORMATION
Corresponding Author
■
*
ORCID
(
21) Bard, A. J.; Faulkner, L. R. Electrochemical Methods:
Fundamentals and Applications; Wiley: New York, 2001.
22) Ross, S. D. The mechanism of anodic dealkylation of aliphatic
amines in acetonitrile. Tetrahedron Lett. 1973, 14, 1237−1240.
23) Portis, L. C.; Bhat, V. V.; Mann, C. K. Electrochemical
Notes
The authors declare no competing financial interest.
(
(
REFERENCES
dealkylation of aliphatic tertiary and secondary amines. J. Org. Chem.
1970, 35, 2175−2178.
(24) Saveant, J.-M. Elements of Molecular and Biomolecular
Electrochemistry: An Electrochemical Approach to Electron Transfer
Chemistry; John Wiley & Sons, Inc., 2006.
■
(
1) Lund, H.; Hammerich, O. Organic Electrochemistry, 4th ed.;
Marcel Dekker: New York, 2001.
2) Lawrence, S. A. Amines: Synthesis, Properties and Applications;
Cambridge University Press: Cambridge, U.K., 2004.
3) Skotheim, T. A.; Reynolds, J. Handbook of Conducting Polymers;
CRC Press: Boca Raton, FL, 2007.
(
(
(25) Torriero, A. A. J.; Siriwardana, A. I.; Bond, A. M.; Burgar, I. M.;
Dunlop, N. F.; Deacon, G. B.; MacFarlane, D. R. Physical and
G
Organometallics XXXX, XXX, XXX−XXX