Organometallics
Article
5g
N-Methylbenzenesulfonamide. 1H NMR (400 MHz, CDCl3,
ppm): 7.87 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.52 (t, J =
REFERENCES
■
(
1) (a) Watson, A. J. A.; Williams, J. M. J. The Give and Take of
8
.0 Hz, 2H), 2.62 (s, 3H).
N,N-Dimethylbenzeneethanamine.
1
5
1H NMR (400 MHz,
Alcohol Activation. Science 2010, 329, 635−636. (b) Gunanathan, C.;
Milstein, D. Applications of Acceptorless Dehydrogenation and
Related Transformations in Chemical Synthesis. Science 2013, 341,
1229712. (c) Nixon, T. D.; Whittlesey, M. K.; Williams, J. M. J.
Transition Metal Catalysed Reactions of Alcohols Using Borrowing
̈
Hydrogen Methodology. Dalton Trans. 2009, 5, 753−762. (d) Bahn,
S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. The
CDCl , ppm): 7.26 (d, J = 7.6 Hz, 2H), 7.19 (d, J = 7.6 Hz, 2H),
3
2
.79−2.75 (m, 2H), 2.54−2.50 (m, 2H), 2.28 (s, 3H).
4d
1
2
-Methyl-1-phenylpropan-1-one. H NMR (400 MHz, CDCl3,
ppm): 7.96 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.46 (t, J =
7
.2 Hz, 2H), 3.56 (m, 1H), 1.22 (d, J = 6.8 Hz, 6H).
4d
1H NMR (400
1
-(2-Fluorophenyl)-2-methylpropan-1-one.
Catalytic Amination of Alcohols. ChemCatChem 2011, 3, 1853−1864.
e) Yang, Q.; Wang, Q.; Yu, Z. Substitution of Alcohols by N-
MHz, CDCl , ppm): 7.77 (t, J = 7.6 Hz, 1H), 7.51−7.46 (m, 1H),
3
(
7
=
.21 (t, J = 8.4 Hz, 1H), 7.14−7.09 (m, 1H), 3.41 (m, 1H), 1.20 (d, J
nucleophiles Via Transition Metal-catalyzed Dehydrogenation. Chem.
Soc. Rev. 2015, 44, 2305−2329. (f) Dobereiner, G. E.; Crabtree, R. H.
Dehydrogenation as a Substrate-Activating Strategy in Homogeneous
Transition-Metal Catalysis. Chem. Rev. 2010, 110, 681−703.
6.8 Hz, 6H).
-(3-Chlorophenyl)-2-methylpropan-1-one.
4
d
1H NMR (400
1
MHz, CDCl , ppm): 7.92 (s, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.52
3
(
=
d, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 3.50 (m, 1H), 1.22 (d, J
6.8 Hz, 6H).
-(4-Chlorophenyl)-2-methylpropan-1-one. 1H NMR (400
MHz, CDCl , ppm): 7.89 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz,
(
g) Quintard, A.; Rodriguez, J. A Step into an eco-Compatible
4
d
Future: Iron- and Cobalt- catalyzed Borrowing Hydrogen Trans-
formation. ChemSusChem 2016, 9, 28−30. (h) Pan, S.; Shibata, T.
Recent Advances in Iridium-Catalyzed Alkylation of C−H and N−H
Bonds. ACS Catal. 2013, 3, 704−712. (i) Guillena, G.; Ramn, D. J.;
Yus, M. Alcohols as Electrophiles in C−C Bond-Forming Reactions:
The Hydrogen Autotransfer Process. Angew. Chem., Int. Ed. 2007, 46,
1
3
2
H), 3.50 (m, 1H), 1.21 (d, J = 6.8 Hz, 6H).
4
-Methyl-1-(2-methylphenyl)propan-1-one. 1H NMR (400
MHz, CDCl , ppm): 7.86 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 7.6 Hz,
4
d
3
2
H), 3.53 (m, 1H), 1.21 (d, J = 6.8 Hz, 6H).
-(4-Methoxyphenyl)-2-methylpropan-1-one. 1H NMR (400
MHz, CDCl , ppm): 7.95 (d, J = 7.2 Hz, 2H), 6.93 (d, J = 8.8 Hz,
4
d
2
358−2364. (j) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J.
1
Borrowing Hydrogen in the Activation of Alcohols. Adv. Synth. Catal.
2007, 349, 1555−1575. (k) Crabtree, R. H. An Organometallic
Future in Green and Energy Chemistry? Organometallics 2011, 30,
3
2
H), 3.85 (s, 3H), 3.51 (m, 1H), 1.20 (d, J = 6.8 Hz, 6H).
4d
1
2
-Methyl-1-phenylpentan-1-one. H NMR (400 MHz, CDCl3,
17−19. (l) Pen
̃
a-Lopez, M.; Piehl, P.; Elangovan, S.; Neumann, H.;
́
ppm): 7.95 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.46 (t, J =
8
3
.0 Hz, 2H), 3.52−3.44 (m, 1H), 1.83−1.75 (m, 1H), 1.47−1.29 (m,
H), 1.19 (d, J = 6.8 Hz, 6H), 0.90 (d, J = 7.6 Hz, 3H).
Beller, M. Manganese-Catalyzed Hydrogen-Autotransfer C−C Bond
Formation: α-Alkylation of Ketones with Primary Alcohols. Angew.
Chem., Int. Ed. 2016, 55, 14967−14971. (m) Guillena, G.; Ramon, D.
́
J.; Yus, M. Hydrogen Autotransfer in the N-Alkylation of Amines and
Related Compounds using Alcohols and Amines as Electrophiles.
Chem. Rev. 2010, 110, 1611−1641. (n) Corma, A.; Navas, J.; Sabater,
M. J. Advances in One-Pot Synthesis through Borrowing Hydrogen
Catalysis. Chem. Rev. 2018, 118, 1410−1459. (o) Hale, L. V. A.;
Szymczak, N. K. Hydrogen Transfer Catalysis beyond the Primary
Coordination Sphere. ACS Catal. 2018, 8, 6446−6461.
ASSOCIATED CONTENT
■
* Supporting Information
S
(2) (a) Yokoyama, Y.; Mochida, K. Et GeNa−YC1 Complex as a
3
3
New Strong Base. J. Organomet. Chem. 1995, 499, C4−C6. (b) Selva,
M.; Bomben, A.; Tundo, P. Selective Mono-N-methylation of Primary
Aromatic Amines by Dimethyl Carbonate over Faujasite X- and Y-
Type Zeolites. J. Chem. Soc., Perkin Trans. 1 1997, 1, 1041−1046.
(c) Lygaitis, R.; Getautis, V.; Grazulevicius, J. V. Hole-transporting
Hydrazones. Chem. Soc. Rev. 2008, 37, 770−788. (d) Szekely, G.;
Amores de Sousa, M. C.; Gil, M.; Castelo Ferreira, F.; Heggie, C.
Genotoxic Impurities in Pharmaceutical Manufacturing: Sources,
Regulations, and Mitigation. Chem. Rev. 2015, 115, 8182−8229.
CCDC 1859831 contains the supplementary crystallographic
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(
e) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I.; Eds.; Pergamon; Oxford, U.K., 1991; Vol. 3, pp 1−63.
f) Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH:
Weinheim, Germany, 2000.
3) (a) Stephan, D. W. A Step Closer to a Methanol Economy.
AUTHOR INFORMATION
(
■
*
(
Nature 2013, 495, 54−55. (b) Olah, G. A. Beyond Oil and Gas: The
Methanol Economy. Angew. Chem., Int. Ed. 2005, 44, 2636−2639.
(c) Natte, K.; Neumann, H.; Beller, M.; Jagadeesh, R. V. Transition-
ORCID
Notes
The authors declare no competing financial interest.
Metal-Catalyzed Utilization of Methanol as a C Source in Organic
1
Synthesis. Angew. Chem., Int. Ed. 2017, 56, 6384−6394.
(4) (a) Li, Y.; Li, H.; Junge, H.; Beller, M. Selective Ruthenium-
catalyzed Methylation of 2-Arylethanols using Methanol as C1
Feedstock. Chem. Commun. 2014, 50, 14991−14994. (b) Ogawa, S.;
Obora, Y. Iridium-catalyzed Selective α-Methylation of Ketones with
Methanol. Chem. Commun. 2014, 50, 2491−2493. (c) Shen, D.;
Poole, D. L.; Shotton, C. C.; Kornahrens, A. F.; Healy, M. P.;
Donohoe, T. J. Hydrogen-Borrowing and Interrupted-Hydrogen-
Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium.
Angew. Chem., Int. Ed. 2015, 54, 1642−1645. (d) Quan, X.;
Kerdphon, S.; Andersson, P. G. C−C Coupling of Ketones with
Methanol Catalyzed by a N-Heterocyclic Carbene−Phosphine
Iridium Complex. Chem. - Eur. J. 2015, 21, 3576−3579. (e) Dang,
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (Nos. 21672045 and 21871068), the
National Science and Technology Pillar Program during the
Twelfth Five-Year Plan Period (2015BAD15B0502), the China
Postdoctoral Science Foundation (2016M591519), the
Heilongjiang Postdoctoral Foundation (LBH-Z16069), and
the National Natural Science Foundation of Heilongjiang
(
Nos. B2018005 and LC2018005).
F
Organometallics XXXX, XXX, XXX−XXX