D
B. Higginson et al.
Cluster
Synlett
(3) (a) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.;
Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem. Int. Ed.
2003, 42, 4302. (b) Bailey, W. F.; Patricia, J. J. J. Organomet. Chem.
1988, 352, 1. (c) Jasch, H.; Heinrich, M. R. In Encyclopedia of Rad-
icals in Chemistry, Biology and Materials; J. Wiley and Sons:
Hoboken, 2012.
(4) (a) Boukherroub, R.; Chatgilialoglu, C.; Manuel, G. Organometal-
lics 1996, 15, 1508. (b) Logan, M. E.; Oinen, M. E. Organometal-
lics 2006, 25, 1052. (c) Sajiki, H.; Kume, A.; Hattori, K.; Hirota, K.
Tetrahedron Lett. 2002, 43, 7247. (d) Sajiki, H.; Kume, A.; Hattori,
K.; Hirota, K. Tetrahedron Lett. 2002, 43, 7247. (e) Cannon, K. A.;
Geuther, M. E.; Kelly, C. K.; Lin, S.; MacArthur, A. H. R. Organo-
metallics 2011, 30, 4067. (f) Cannon, K. A.; Geuther, M. E.; Kelly,
C. K.; Lin, S.; MacArthur, A. H. R. Organometallics 2011, 30, 4067.
(g) Haibach, M. C.; Stoltz, B. M.; Grubbs, R. H. Angew. Chem. Int.
Ed. 2017, 56, 15123. (h) You, T.; Wang, Z.; Chen, J.; Xia, Y. J. Org.
Chem. 2017, 82, 1340. (i) Yang, J.; Brookhart, M. J. Am. Chem. Soc.
2007, 129, 12656. (j) Fujita, K.; Owaki, M.; Yamaguchi, R. Chem.
Commun. 2002, 2964.
(9) (a) Discekici, E. H.; Treat, N. J.; Poelma, S. O.; Mattson, K. M.;
Hudson, Z. M.; Luo, Y.; Hawker, C. J.; de Alaniz, J. R. Chem.
Commun. 2015, 51, 11705. (b) Ghosh, I.; Ghosh, T.; Bardagi, J. I.;
König, B. Science 2014, 346, 725. (c) Bardagi, J. I.; Ghosh, I.;
Schmalzbauer, M.; Ghosh, T.; König, B. Eur. J. Org. Chem. 2018,
34. (d) Graml, A.; Neveselý, T.; Jan Kutta, R.; Cibulka, R.; König, B.
Nat. Commun. 2020, 11, 1. (e) MacKenzie, I. A.; Wang, L.;
Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.;
Dunietz, B. D.; Nicewicz, D. A. Nature 2020, 580, 76.
(10) Zhou, Z.-Z.; Zhao, J.-H.; Gou, X.-Y.; Chen, X.-M.; Liang, Y.-M. Org.
Chem. Front. 2019, 6, 1649.
(11) Representative Procedure An oven-dried Schlenk tube con-
taining a stirrer bar was charged with Na2CO3 (0.3 mmol, 31.8
mg, 1.5 equiv) and NiI2 (0.02 mmol, 6.1 mg, 10 mol%). The
Schlenk tube was transferred into a nitrogen-filled glovebox
where dcyb (0.022 mmol, 9.9 mg, 11 mol%), CsI (0.04 mmol,
10.4 mg, 20 mol%) were added. The Schlenk tube was sealed
and removed from the glovebox, 4-bromoanisole (0.2 mmol,
37.4 mg, 1 equiv) and anhydrous THF (0.2 M, 1 mL) was added
using Schlenk line techniques. The mixture was stirred for 15
min. Then, it was placed in a preheated reaction vessel at 35 °C
and stirred for 72 h under blue-light irradiation. The mixture
was quenched with 1 M HCl (2 mL) and extracted with EtOAc,
0.5 cm3 of silica gel were added to the round-bottom flask and
evaporated on a rotary evaporator set at 40 °C and 100 mbar.
The silica was then subjected to column chromatography,
affording anisole (19.4 mg, 90% yield). 1H NMR (400 MHz,
CDCl3): = 7.36–7.24 (m, 2 H), 7.01–6.88 (m, 3 H), 3.82 (s, 3 H).
13C NMR (101 MHz, CDCl3): = 159.5, 129.4, 120.6, 113.9, 55.1.
(12) (a) Zhou, Z.-Z.; Zhao, J.-H.; Gou, X.-Y.; Chen, X.-M.; Liang, Y.-M.
Org. Chem. Front. 2019, 6, 1649. (b) Janni, M.; Peruncheralathan,
S. Org. Biomol. Chem. 2016, 14, 3091. (c) Miura, Y.; Oka, H.;
Yamano, E.; Morita, M. J. Org. Chem. 1997, 62, 1188. (d) Lang, Y.;
Peng, X.; Li, C.-J.; Zeng, H. Green Chem. 2020, 22, 6323. (e) Dong,
Y.; Su, Y.; Du, L.; Wang, R.; Zhang, L.; Zhao, D.; Xie, W. ACS Nano
2019, 13, 10754. (f) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.;
Rivera, N. R.; Colletti, S. L.; Davies, I. W.; Macmillan, D. W. C.
Science 2017, 358, 1182. (g) Wang, X.; Zhu, M.-H.; Schuman, D.
P.; Zhong, D.; Wang, W.-Y.; Wu, L.-Y.; Liu, W.; Stoltz, B. M.; Liu,
W.-B. J. Am. Chem. Soc. 2018, 140, 10970. (h) Mutsumi, T.; Iwata,
H.; Maruhashi, K.; Monguchi, Y.; Sajiki, H. Tetrahedron 2011, 67,
1158.
(5) (a) Ke, J.; Wang, H.; Zhou, L.; Mou, C. Zhang J.; Pan, Y.; Chi, R. Y.
Chem. Eur. J. 2019, 25, 6911. (b) Mitsudo, K.; Okada, T.;
Shimohara, S.; Mandai, H.; Suga, S. Electrochemistry 2013, 81,
362.
(6) (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116,
10035. (b) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016,
116, 9850. (c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016,
116, 10075. (d) Albini, A.; Fagnoni, M. Green Chemical Reac-
tions; Tundo P., Esposito V.Springer: Dordrecht 2008, 173
(e) Beeler, A. B. Chem. Rev. 2016, 116, 9629. (f) Balzani, V.;
Ceroni, P.; Juris, A. Photochemistry and Photophysics: Concepts,
Research, Applications, Vol. 1; Wiley-VCH: Weinheim, 2014.
(7) (a) Cao, D.; Yan, C.; Zhou, P.; Zeng, H.; Li, C.-J. Chem. Commun.
2019, 55, 767. (b) Fukuyama, T.; Fujita, Y.; Miyoshi, H.; Ryu, I.;
Kao, S.-C.; Wu, Y.-K. Chem. Commun. 2018, 54, 5582. (c) Ding, T.-
H.; Qu, J.-P.; Kang, Y.-B. Org. Lett. 2020, 22, 3084.
(8) (a) Michelet, B.; Deldaele, C.; Kajouj, S.; Moucheron, C.; Evano, G.
Org. Lett. 2017, 19, 3576. (b) Li, K.; Wan, Q.; Yang, C.; Chang, X.-
Y.; Low, K.-H.; Che, C.-M. Angew. Chem. Int. Ed. 2018, 57, 14129.
(c) Häring, M.; Pérez-Ruiz, R.; von Wangelin, A.; Díaz, D. D.
Chem. Commun. 2015, 51, 16848. (d) Revol, G.; McCallum, T.;
Morin, M.; Gagosz, F.; Barriault, L. Angew. Chem. Int. Ed. 2013,
52, 13342.
© 2021. Thieme. All rights reserved. Synlett 2021, 32, A–D