Page 3 of 4
ChemComm
for the reaction. Secondly, the reactions of 1a and 2-bromo-1-
phenylethan-1-one (A) in the presence of 0.2 equivalents of CBr
Table 3, Entry 3) and in the absence of CBr (Table 3, Entry 4)
reaction. Further application of this CBr
will be reported in due course.
4
-mediated methodology
4
DOI: 10.1039/C4CC09922B
(
4
were investigated respectively. The designed product 3aa was
achieved in 55% and 10 % yields. These results indicate that
Acknowledgements
5
4
5
We thank the National Natural Science Foundation of China
compound A should be an important intermediate in this CBr
4
(
(
21262029) and the Fok Ying Tong Education Foundation
141116) for financially supporting this work.
mediated process. Radical trapping experiment was also
conducted by employing TEMPO as a radical scavenger. No
designed product 3aa was obtained in the standard reaction of 1a
with 2a (Table 3, Entry 5). This result suggests that the present
reaction includes a radical process.
Notes and references
1
0
a
Key Laboratory of Eco-Environment-Related Polymer Materials
5
5
0
5
Ministry of Education; College of Chemistry and Chemical Engineering,
Northwest Normal University, Lanzhou, Gansu 730070, China. E-mail:
†
Electronic Supplementary Information (ESI) available: [Experimental
procedures and characterization data]. See DOI: 10.1039/b000000x/
1
For selected reviews, see: (a) S. A. Girard, T. Knauber, C. J. Li ,
Angew. Chem. Int. Ed., 2014, 53, 74–100. (b) C. S. Yeung, V. M.
Dong, Chem. Rev., 2011, 111, 1215–1292. (c) M. Klussmann, D.
Sureshkumar, Synthesis., 2011, 353–369. (d) S. Murahashi, D. Zhang,
Chem. Soc. Rev., 2008, 37, 1490–1501.
a
b
60
2
For selected recent progress, see: (a) Y. M. Shen, M. Li, S. Z. Wang,
T. G. Zhan, Z. Tan, C. C. Guo, Chem. Commun., 2009, 8, 953–955.
1
a (1.5 mmol), 2a or 6 (0.5 mmol), 48 h. Yields of the isolated
products. A = 2-bromo-1-phenylethan-1-one. TEMPO = 2,2,6,6-
tetramethylpiperidin-1-oxyl.
(b) O. Baslé, C-J. Li, Chem. Commun., 2009, 27, 4124–4126. (c) Y.
1
5
Q. Zou, L. Q. Lu, L. Fu, N. J. Chang, J. Rong, J. R. Chen, W. J. Xiao,
Angew. Chem. Int. Ed., 2011, 50, 7171–7175. (d) E. Boess, D.
Sureshkumar, A. Sud, C. Wirtz, C. Fares, Klussmann, M. J. Am.
Chem. Soc., 2011, 133, 8106–8109. (e) M. O. Ratnikov, X. F. Xu, M.
P. Doyle, J. Am. Chem. Soc. 2013, 135, 9475–9479. (f) C. Huo, C.
Wang, M. Wu, X. Jia, X. Wang, Y. Yuan, H. Xie, Org. Biomol.
Chem., 2014, 12, 3123-3128. (g) A. Tanoue, W. J. Yoo, S. Kobayashi,
Org. Lett., 2014, 16, 2346–2349. (h) L. Zhao, C-J. Li, Angew. Chem.
Int. Ed., 2008, 47, 7075–7078. (i) J. Xie, Z. Z. Huang, Angew. Chem.
Int. Ed., 2010, 49, 10181–10185. (j) H. Richter, O. G. Mancheño,
Org. Lett., 2011, 13, 6066–6069. (k) G. Zhang, Y. Zhang, R. Wang,
Angew. Chem. Int. Ed., 2011, 50, 10429–10432. (l) Z. Q. Wang, M.
Hu, X. C. Huang, L. B. Gong, Y. X. Xie, J. H. Li, J. Org. Chem.,
Table 3. Control experiments.
6
7
7
8
8
9
9
5
0
5
0
5
0
5
Our proposed reaction mechanism for this catalytic amounts of
sp3
sp3
CBr4 induced C -C
coupling is illustrated in Scheme 3.
initially react to form 2-bromo-1-
Acetophenone 1a and CBr
4
2
2
3
0
5
0
phenylethan-1-one A. Then, a homolytic cleavage of C-Br bond
occurs under heating conditions to form radical B and bromine
radical. When the bromine radical is formed, it can abstract the
hydrogen atom from isochroman 1a to generate radical C,
coupling of radical B and C results in the desired product 3aa
(Path 1). On the other path, radical C can react with dioxygen to
provide the peroxide radical D. Peroxide radical D then abstracts
the hydrogen atom from isochroman 1a to form hydroperoxide E
and radical C. Chain propagation continues until all isochroman
a are consumed. Benzoxy cation F is then formed through an
acid catalyzed S 1 type procedure from hydroperoxide E. Finally,
benzoxy cation F can then be trapped with ketone 2a to afford the
desired product 3aa (Path 2).
2
2
012, 77, 8705–8711. (m) S. Zhu, M. Rueping, Chem. Commun.,
012, 48, 11960–11962. (n) C. Huo, C. Wang, C. Sun, X. Jia, X.
Wang, W. Chang, M. Wu, Adv. Synth. Catal., 2013, 355, 1911–1916
(o) W. Wei, R. Song, J. Li, Adv. Synth. Catal., 2014, 356, 1703–1707.
(p) C. Huo, C. Wang, M. Wu, X. Jia, H. Xie, Y. Yuan, Adv. Synth.
Catal., 2014, 356, 411–415. (q) Z. Q. Zhu, P. Bai, Z. Z. Huang, Org.
Lett., 2014, 16, 4881−4883.
(a) S. J. Park, J. Price, M. H. Todd, J. Org. Chem., 2012, 77, 949−955.
(b) W. Muramatsu, K. Nakano, C. J. Li, Org. Lett. 2013, 15, 3650–
3653. (c) Y. H. Zhang, C. J. Li, Angew. Chem., 2006, 118, 1983–
1
N
3
1
986. (d) H. F. He, K. Wang, B. Xing, G. R. Sheng, T. X. Ma, W. L.
Bao Synlett, 2013, 24, 211–214. (e) Z. L. Meng, S. T. Sun, H. Q.
Yuan, H. X. Lou, L. Liu, Angew. Chem. Int. Ed., 2014, 53, 543–547.
(f) D. Chen, F. U. Pan, J. R. Gao, J. G. Yang, Synlett ,2013, 24,
2085–2088. (g) W. Chen, Z. Xie, H. Zheng, H, Lou, L. Liu, Org.
Lett., 2014, 16, 5988–5991. ( h) W. Muramatsu, K. Nakano. Org.
Lett., 2014, 16, 2042–2045.
4
5
(a) Y. H. Zhang, C. J. Li, J. Am. Chem. Soc., 2006, 128, 4242–4243.
(b)W. J. Yoo, C. A. Correia, Y. H. Zhang, C. J. Li, Synlett., 2009,
138–142. (c) H. Richter, R. Rohlmann, O. G. Mancheño, Chem. Eur.
J., 2011, 17, 11622–11627. (d) X. G. Liu, B. Sun, Z. Y. Xie, X. J.
Qin, L. Liu, H. X. Lou, J. Org. Chem., 2013, 78, 3104−3112.
(a) M. Y. Chen, A. S. Y. Lee, J. Org. Chem., 2002, 67, 1384–1387. (b)
A. S. Y. Lee, F. Y. Su, Tetrahedron Lett., 2005, 46, 6305–6309. (c) L.
Zhang, Y. Luo, R. Fan, J. Wu, Green Chem., 2007, 9, 1022–1025. (d)
J. Tan, F. Liang, Y. Wang, X. Cheng, Q. Liu, H. Yuan, Org. Lett.,
3
5
Scheme 3. Proposed Reaction Mechanism
Conclusions
1
00
4
In summary, we have demonstrated a novel CBr -mediated
dehydrogenative coupling between cyclic benzyl ethers and
ketones. The reactions were performed in simple solvent-free
aerobic conditions. Only catalytic amounts of CBr was used as a 105
promoter. This work also presents a new way to initiate radical
2
2
008, 10, 2485–2488. (e) C. Huo, T. H. Chan, Adv. Synth. Catal.,
009, 351, 1933–1938. (f) C. Huo, C. Sun, C. Wang, X. Jia, W.
Chang, ACS Sustainable Chem. Eng., 2013, 1, 549–553.
C. Huo, Y. Yuan, M. Wu, X. Jia, X. Wang, F. Chen, J. Tang, Angew.
Chem. Int. Ed., 2014, 13544–13547.
4
0
4
6
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3