I. Karame´ et al. / Tetrahedron Letters 44 (2003) 7687–7689
7689
adamantly, distinct migratory aptitudes of the two
References
hydrogen atoms have been observed by Yamamoto et
al. with monodeuteriated epoxides.3 Nevertheless, the
use of a bulky and chiral Lewis acid, or of a chiral
iridium catalyst, may lead to a stereoselective control
for this reaction.
1. Jacobsen, E. N.; Wu, M. H. In Comprehensive Asymmet-
ric Catalysis II, Jacobsen, E. N.; Pfaltz, A.; Yamamoto,
H., Eds.; Springer-Verlag: New York, 1999; Chapter 18,
p. 649.
2. Meinwald, J.; Labana, S. S.; Chadha, M. S. J. Am. Chem.
Soc. 1963, 85, 582–585.
3. Maruoka, K.; Ooi, T.; Yamamoto, H. Tetrahedron 1992,
48, 3303–3312.
4. (a) House, H. O. J. Am. Chem. Soc. 1955, 77, 3070–3075;
(b) Kita, Y.; Kitagaki, S.; Yoshida, Y.; Mihara, S.; Fang,
D. F.; Kondo, M.; Okamoto, S.; Imai, R.; Akai, S.;
Fujioka, H. J. Org. Chem. 1997, 62, 4991–4997.
5. (a) Rickborn, B.; Gerkin, R. M. J. Am. Chem. Soc. 1971,
93, 1693–1700; (b) Sudha, R.; Malola Narasimhan, K.;
Geetha Saraswathy, V.; Sankararaman, S. J. Org. Chem.
1996, 61, 1877–1879.
In summary, this work presents a new effective and
regioselective alternative for the Meinwald rearrange-
ment of epoxides catalyzed by iridium(III) species. The
hydrated iridium complex used is very stable and the
reaction can be run under mild conditions (no inert
atmosphere or high temperature are required). This
alternative of the Meinwald rearrangement is also inter-
esting since many chiral complexes of iridium are
already described in the literature, and we are now
focusing on the enantioselective isomerization of epox-
ides to carbonyl groups.
6. Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212–8216.
7. (a) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1997,
62, 6547–6561; (b) Kulasegaram, S.; Kulawiec, R. J.
Tetrahedron 1998, 54, 1361–1374.
8. (a) Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B.
J.; Mohan, R. S. Tetrahedron Lett. 2000, 41, 1527–1530;
(b) Bhatia, K. A.; Eash, K. J.; Leonard, N. M.; Oswald,
M. C.; Mohan, R. S. Tetrahedron Lett. 2001, 42, 8129–
8132; (c) Leonard, N. M.; Wieland, L. C.; Mohan, R. S.
Tetrahedron 2002, 58, 8373–8397.
9. Sonawane, H. R.; Bellur, N. S.; Ahuja, J. R.; Kulkarni,
D. G. Tetrahedron: Asymmetry Report No. 7. 1992, 3,
163–192.
10. Kim, G. J.; Shim, J. H. Tetrahedron Lett. 1999, 40,
6827–6830.
Representative procedure for the isomerization of epox-
ides: The epoxide (40 ml, 0.335 mmol for styrene epox-
ide) was added to a solution of IrCl3·xH2O (1 mg,
3.35×10−3 mmol) in THF (1 mL) and the reaction
mixture stirred at room temperature. The reaction time
was determined by GC analysis. After 2 h at 50°C, the
solvent was removed and phenylacetaldehyde was
recovered. Its purity (>99%) was determined by GC,
13C and 1H NMR. Conversions and ee values were
determined by GC on a chiral column (b-dex-225
column, 30 m). All the final products were isolated in
almost quantitative yields and characterized by com-
1
parison of their 13C and H NMR spectra with already
reported data.